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8.2 Rouché’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.3 Hurwitz’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.4 Open Mapping and Inverse Function Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.5 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.6 Winding Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.7 The Jump Theorem for Cauchy Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.8 Simply Connected Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 The Schwarz Lemma and Hyperbolic Geometry 38

9.1 The Schwarz Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9.2 Conformal Self-Maps of the Unit Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9.3 Hyperbolic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10 Harmonic Functions and the Reflection Principle 40

10.1 The Poisson Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10.2 Characterization of Harmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.3 The Schwarz Reflection Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3



1 The Complex Plane and Elementary Functions

1.1 Complex Numbers

Definition 1.1. A complex number is an expression of the form z = x + iy where x and y are real

numbers. The component x the real part of z and y the imaginary part of z. We will denote these with

x = Re z y = Im z.

The set of all complex numbers is called the complex plane and denote it with C. There exists a one-to-one

correspondence between the complex numbers and points in the Euclidean plane R2:

z = x+ iy ←→ (x, y).

The real numbers correspond to the x-axis in the Euclidean plane while the purely imaginary numbers

correspond to the y-axis and are of the form iy. The purely imaginary numbers form the imaginary axis

iR.
We add complex numbers by adding their real and imaginary parts separately.

(x+ iy) + (u+ iv) = (x+ u) + i(y + v).

Thus, Re (z+w) = Re z+Rew and Im (z+w) = Im z+Imw. The addition of complex numbers corresponds

to the addition of vectors in the Euclidean plane

Definition 1.2. The modulus of a complex number z = x+ iy is the length
√
x2 + y2 of the corresponding

vector in the Euclidean plane. The modulus is also called the absolute value of z.

Lemma 1.3 (Triangle Inequality). The triangle inequality for vectors in the plane takes the form

|z + w| ≤ |z|+ |w|, z, w ∈ C.

Similarly, we have the related inequality

|z − w| ≥ |z| − |w|, z, w ∈ C. (1.1)

Definition 1.4. Complex numbers can be multiplied, a feature that distinguishes the complex plane C from

the Euclidean plane R2. Formally, complex multiplication is defined by

(x+ iy)(u+ iv) = xu− yv + i(xv + yu).

The usual laws of multiplication hold true:

(z1z2)z3 = z1(z2z3), (associative law)

z1z2 = z2z1, (commutative law)

z1(z2 + z3) = z1z2 + z1z3. (distributive law)

With respect to algebraic operations, complex numbers behave the same as real numbers, but complex

numbers require the special rule i2 = −1.

Definition 1.5. Every complex number z ̸= 0 has a multiplicative inverse 1/z which is given explicity by

1

z
=

x− iy

x2 + y2
, z = x+ iy ∈ C, z ̸= 0.
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Definition 1.6. The complex conjugate of a complex number z = x + iy is defined to be z = x − iy.

Geometrically speaking, it is the reflection of z across the x-axis in the Euclidean plane.

Lemma 1.7. The following are useful identities involving conjugates:

z = z, z ∈ C,

z + w = z + w, z, w ∈ C,

zw = zw, z, w ∈ C,

|z| = |z|, z ∈ C,

|z|2 = zz, z ∈ C.

We can rewrite the 1/z in terms of the complex conjugate of z:

1/z = z/|z|2, z ∈ C, z ̸= 0.

The real and imaginary parts of z can be recovered using complex conjugates:

Re z = (z + z)/2, Im z = (z − z)/2i, z ∈ C.

From |zw|2 = (zw)(zw) = (zz)(ww) = |z|2|w|2, we obtain:

|zw| = |z||w|.

Definition 1.8. A complex polynomial of degree n ≥ 0 is a function of the form

p(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0, z ∈ C.

where a0, . . . , an are complex numbers and an ̸= 0.

Theorem 1.9 (Fundamental Theorem of Algebra). Every polynomial p(z) of degree n ≥ 1 has a

factorization

p(z) = c(z − z1)
m1 · · · (z − zk)

mk

where the zj ’s are unique and mj ≥ 1. This factorization is unique, up to a permutation of the factors.

Definition 1.10. The points z1, . . . , zk in the preceding theorem are uniquely characterized as the zeros of

p(z), or the roots of the equation p(z) = 0. The integer mj is characterized as the unique integer m with

the property that p(z) can be factored as (z − zj)
mq(z) where q(z) is a polynomial satisfying q(zj) ̸= 0.

1.2 Polar Representation

Definition 1.11. Since any point (x, y) ̸= (0, 0) in the plane can be represented by polar coordinates r and

θ where r =
√
x2 + y2 and θ is the angle subtended by (x, y) and the x-axis, we can also express complex

numbers using polar coordinates.

z = x+ iy = r(cos θ + sin θ).

Here r = |z| is the modulus of z. We define the argument of z to be the angle θ and we write

θ = arg z.

Thus arg z is a mutli-valued function, defined for z ̸= 0. The principal value of arg z, denoted Arg z, is the

value of θ within −π < θ ≤ π. The values of arg z are obtained by adding integer multiples of 2π to Arg z:

arg z = {Arg z + 2πk : k = 0,±1,±2, . . .}, z ̸= 0.
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It will be convenient to introduce the notation

eiθ = cos θ + i sin θ. (1.2)

From (1.2), we obtain

z = reiθ r = |z|, θ = arg z.

This representation is the polar representation of z. Since eiθ = cos θ + i sin θ, eiθ is also 2π-periodic, so

ei(θ+2πm) = eiθ, m = 0,±1,±2, . . . .

and

e2πmi = 1, m = 0,±1,±2, . . . .

Lemma 1.12. Some useful identities satisfied by the exponential function are

|eiθ| = 1, (1.3)

eiθ = e−iθ, (1.4)

1/eiθ = e−iθ. (1.5)

Definition 1.13. An important property of the exponential function is the addition formula:

ei(θ+φ) = eiθeiφ, −∞ < θ, φ <∞. (1.6)

This is equivalent to

cos(θ + φ) + i sin(θ + φ) = (cos θ + i sin θ)(cosφ+ i sinφ).

Equating the real and imaginary components on either side, we obtain the addition formulae for sine and

cosine:

cos(θ + φ) = cos θ cosφ− sin θ sinφ, (1.7)

sin(θ + φ) = cos θ sinφ+ sin θ cosφ. (1.8)

Thus (1.3), (1.4), and (1.5) can be rewritten to

arg z = − arg z, (1.9)

arg(1/z) = − arg z, (1.10)

arg(z1z2) = arg z1 + arg z2. (1.11)

If we let z1 = r1e
iθ1 and z2 = r2e

iθ2 , then we can use the addition formula and write multiplication in polar

form:

z1z2 = r1r2e
iθ1eiθ2 = r1r2e

i(θ1+θ2).

Definition 1.14. The addition formula also allows use to derive formulas for cosnθ and sinnθ in terms of

cos θ and sin θ. Thus

cosnθ + i sinnθ = einθ =
(
eiθ
)n

= (cos θ + i sin θ)
n
.

By equating cosnθ with the real terms and sinnθ with the imaginary terms, we produce identities that are

known as de Moivre’s formulae.
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Definition 1.15. A complex number z is an nth root of w if zn = w. The nth roots of w are precisely the

roots of the polynomial zn − w. The roots are given explicitly by

r = ρ1/n,

θ =
φ

n
+

2πk

n
, k = 0, 1, 2, . . . , n− 1.

where we take the usual positive root of ρ. Since these n roots are distinct, and there at most n nth roots,

this list includes all the nth roots of w. Graphically, the roots are distributed equally around the circle

centered at 0 with radius |w|1/n.

Definition 1.16. The nth roots of 1 are also called the nth roots of unity and are given explicitly by:

ωk = e2πik/n, 0 ≤ k ≤ n− 1.

1.3 Stereographic Projection

Definition 1.17. The extended complex plane is the complex plane together with the point at infinity.

We denote the extended complex plane by C∗, so that C∗ = C∪{∞}. We can visualize the extended complex

plane through the stereographic projection.

Definition 1.18. Let P = (X,Y, Z) be any point on the unit sphere other than the north pole N = (0, 0, 1).

If we draw a straight line thrownN and P , the stereographic projection of P is the point z = (x+iy) ∼ (x, y, 0)

where the straight line meets the coordinate plane at Z = 0. We can think of the stereographic projection

as a map from the unit sphere in three-dimensional Euclidean space R3 to th extended complex plane. The

stereographic projection of the north pole is defined to be ∞, the point at infinity.

An explicit formula for the stereographic projection can be derived as follows. Let L be the line throw P

and N parameterically by N + t(P −N) where −∞ < t <∞. Then the line meets the (x, y)-plane at poin

(x, y, 0) which satisfies

(x, y, 0) = (tX, tY, t(Z − 1))

for some parameter value t. Equating the two sides, we get{
x = tX = X/(1− Z),

y = tY = Y/(1− Z).

From the equation of the sphere X2 + Y 2 + Z2 = 1, we get

t =
1

2
(|z|2 + 1)

which yields 
X = 2x/(|z|2 + 1),

Y = 2y/(|z|2 + 1),

Z = (|z|2 − 1)/(|z|2 + 1).

The point (X,Y, Z) on the sphere is deterimed uniquely by the point z = x+ iy of the plane. Thus there is a

one-to-one correspondence between points P on the sphere, execept the north pole N , and points z = z+ iy

of the complex plane.

Theorem 1.19. Under the stereographic projection, circles on the sphere correspond to circles and straight

lines in the plane.

Definition 1.20. By the previous theorem, any straight line in the complex plane can be thought of as a

circle through ∞.
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1.4 The Square and Square Root Functions

Definition 1.21. The square function, w = z2, is better understood in polar form. From the polar decom-

position w = z2 = r2e2iθ, we have

|w| = |z|2,
argw = 2arg z.

Definition 1.22. Finding the inverse function for w = z2 is more difficult. Every number w ̸= 0 is mapped

by exactly two values of z, the square roots ±
√
w. In order to define an inverse function, we must restrict

the domain in the z-plane so that each w is mapped to by exactly one z.

All the values in the right half the z-plane map to the entire w-plane. Thus we can draw a slit or branch

cut along the negative real axis from −∞ to 0, and we can define the inverse function on the slit plane

C \ (−∞, 0].

Definition 1.23. We refer to the determination of the inverse function as the branch of the inverse. One

branch f1(w) of the inverse function is defined by declaring f1(w) the value z such that Re z > 0 and z2 = w.

Then f1(w) maps the slit plane C \ (−∞, 0] onto the right half of the z-plane. To specify f1(w) explicitly,

express w = ρeiφ where −π < φ < π, and then

f1(w) =
√
ρeiφ/2.

The function f1 is called the principal branch of
√
w. It is expressed in terms of the argument function as

f1(w) = |w|1/2ei(Argw)/2, w ∈ C \ (−∞, 0].

The branch f2(w) is defined similarly except it maps values in the w-plane to values on the left half of the

z-plane. The two slit planes, corresponding to f1(w) and f2(w) form the Riemann surface of
√
w.

1.5 The Exponential Function

Definition 1.24. We extend the exponential function to all complex numbers z be defining

ez = ex cos y + iex sin y, z ∈ C.

Since eiy = cos y + i sin y, we could write

ez = exeiy.

This identity is simply the polar representaton of w = ez:

|w| = |ex|,
argw = y.

Since cosx and sin y are 2π-periodic, ez is also 2π-periodic:

ez+2πi = ez, z ∈ C.

Additional properties of the exponential function

ez+w = ezew, z, w ∈ C,

1/ez = e−z, z ∈ C.
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1.6 The Logarithm Function

Definition 1.25. For z ̸= 0, we define log z to be a multi-valued function

log z = log |z|+ i arg z,

= log |z|+ iArg z + 2πim, m = 0,±1,±2, . . . .

The values of log z are precisely the complex numbers w such that ew = z.

Definition 1.26. We define the principle value of log z to be

Log z = log |z|+ iArg z, z ̸= 0.

Thus Log z is a single-valued inverse of ew with values in the horizontal strip −π < Imw ≤ π. From Log z

we can find the other values of log z:

log z = Log z + 2πim, m = 0,±1,±2, . . . .

1.7 Power Functions and Phase Factors

Definition 1.27. Let α be an arbitrary complex number. We defined the power function zα to be the

multivalued function

zα = eα log z, z ̸= 0.

Thus the values of za are

zα = eα[log |z|+iArg z+2πim],

= eαLog ze2πiαm, m = 0,±1,±2, . . . .

If α is not an integer, we cannot define zα on the complex plane such that the function is continuous.

We must make a branch cut and consider the continuous branch of zα defined explicitly on the slit plane

C \ [0,∞) by

w = rαeiαθ, for z = reiθ, 0 < θ < 2π

For θ = 0, we have zα = rα. For θ = 2π, we have zα = rαe2πiα. We call the multiplier e2πiα the phase

factor of zα at z = 0.

Lemma 1.28 (Phase Change Lemma). Let g(z) be a single-valued function that is defined and continuous

near z0. For any continuously varying branch of (z − z0)
α, the function f(z) = (z − z0)

αg(z) is multiplied

by the phase factor e2πiα when z traverses a complete circle about z0 in the positive direction.

1.8 Trigonometric and Hyperbolic Functions

Definition 1.29. We extend the definition of sin z and cos z to complex numbers by using their exponential

forms:

sin z =
eiz + e−iz

2
, z ∈ C,

cos z =
eiz − e−iz

2i
, z ∈ C.

These definitions agree with the usual definition when z is real. Evidently, cos z is still an even function and

sin z is still an odd function,

cos(−z) = cos z, z ∈ C,

sin(−z) = − sin z, z ∈ C.
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They are still 2π-periodic:

cos(z + 2π) = cos z, z ∈ C,

sin(z + 2π) = sin z, z ∈ C.

The addition formulae remain valid,

cos(z + w) = cos z cosw − sin z sinw, z ∈ C,

sin(z + w) = sin z cosw − cos z sinw, z ∈ C.

And the following identity still holds true,

cos2 z + sinz = 1, z ∈ C.

Definition 1.30. We define the hyperbolic functions in a similar manner.

sinh z =
ez + e−z

2
, z ∈ C,

cosh z =
ez − e−z

2
, z ∈ C.

Both cosh z and sinh z are periodic with period 2πi,

cosh(z + 2πi) = cosh z, z ∈ C,

sinh(z + 2πi) = sinh z, z ∈ C.

When viewed as functions of complex variables, the trigonometric and hyperbolic functions exhibit a close

relationship. They are obtained from each other by rotating the domain space by π/2,

cosh(iz) = cos z, cos(iz) = cosh z,

sinh(iz) = i sin z, sin(iz) = i sinh z.

Using these equations and the addition formula for sin z, we obtain the Cartesian representation for sin z,

sin z = sinx cosh y + i cosx sinh y, z = x+ iy ∈ C.

Thus,

| sin z|2 = sin2 x cosh2 y + cos2 x sinh2 y.

And using cos2 x+ sin2 x = 1 and cosh2 y = 1 + sinh y, we obtain

| sin z|2 = sin2 x+ sinh2 y.

The other trigonometric and hyperbolic functions are obtained from their usual formulae:

tan z =
sin z

cos z
, tanh z =

sinh z

cosh z
, z ∈ C.

Definition 1.31. The inverse trigonometric functions are mutlivalued functions that can be expressed in

terms of the logarithm function. Suppose w = sin−1 z. Then solving

sinw =
eiw − e−iw

2i
= z.

we obtain

sin−1 z = −i log
(
iz ±

√
1− z2

)
.

The other functions can be obtained in a similar manner.
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2 Analytic Functions

2.1 Review of Basic Analysis

Definition 2.1. A sequence of complex numbers {sn} converges to s if for any ϵ > 0, there is an integer

N ≥ 1 such that |sn − s| < ϵ for all n ≥ N . If {sn} convergs to s, we write sn → s or lim sn = s.

Definition 2.2. A sequence of complex numbers {sn} is said to be bounded if there is some finite number

R > 0 such that |sn| < R for all n.

Theorem 2.3. Suppose {sn} and {tn} are bounded sequences such that sn → s and tn → t, then

(a) sn + tn → s+ t,

(b) sntn → st,

(c) sn/tn → s/t, provided that t ̸= 0.

Theorem 2.4. A sequence {sn} of complex numbers converges if and only if the corresponding sequences

of real and imaginary parts of the sn’s converge.

Theorem 2.5. We define a sequence of complex numbers {sn} to be a Cauchy sequence if the differences

sn − sm tend to 0 as n and m tend to ∞. More formally, a sequence is Cauchy if for any ϵ > 0, there exists

an N ≥ 1 such that |sn − sm| < ϵ if m,n ≥ N .

Theorem 2.6. A sequence of complex numbers converges if and only if it is a Cauchy sequence.

Definition 2.7. We say that a complex-valued function f(z) has limit L as z tends to z0 if the valued

f(z) are near L whenever z is near z0, z ̸= z0. More formally, f(z) has limit L as z tends to z0 if for any

ϵ > 0, there is a δ > 0 such that |f(z)− L| < ϵ whenever 0 < |z − z0| < δ. In this case, we write

lim
z→z0

f(z) = L,

or f(z)→ L as z → z0.

Theorem 2.8. The complex-valued function f(z) has limit L as z → z0 if and only if f(zn) → L for any

sequence {zn} in the domain of f(z) such that zn → z0 and zn → z0.

Definition 2.9. If a function has a limit at z0, then the function is bounded near z0. Futher, if f(z) → L

and g(z)→M as z → z0, then the following are true as z → z0:

(a) f(z) + g(z)→ L+M ,

(b) f(z)g(z)→ LM ,

(c) f(z)/g(z)→ L/M, provided that M ̸= 0.

Definition 2.10. We say that f(z) is continuous at z0 if f(z)→ f(z0) as z → z0. A continuous function

is a function that is continuous at every point of its domain.

Definition 2.11. A subset U of the complex plane is open if whenever z ∈ U , there is a disk centered at z

that is contained in U .

Definition 2.12. A subset D of the complex plane is a domain if D is open and any two points of D can

be connected by a broken line segment within D.
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Theorem 2.13. If h(x, y) is continuous differentiable on a domain D such that ∇h = 0 on D, then h is

constant.

Definition 2.14. A set is convex if whenever two points belong to the set, the straight line segment joining

them is contained within the set.

Definition 2.15. A set is star-shaped with respect to z0 if whenever a point belongs to the set, the

straight line segment between it and z0 is contained within the set. Any convex set if star-shaped with

respect to each of its points.

Definition 2.16. A star-shaped domain is a domain that is star-shaped with respect to one of its points.

Definition 2.17. A subset E of the complex plane is closed if it contains the limit of any convergent

subsequence in E.

Definition 2.18. The boundary of a set E consists of the points z such that every disk centered at z

contains both points in E and not in E. A set is closed if it contains its boundary, and a set is open if it

does not include any of its boundary points.

Definition 2.19. A subset of the complex plane is said to be compact if it is both closed and bounded.

Theorem 2.20. A continuous real-valued function on a compact set attains a maximum and a minimum.

2.2 Analytic Functions

Definition 2.21. A complex-valued function f(z) is differentiable at z0 if the difference quotients

f(z)− f(z0)

z − z0
.

have a limit as z → z0. The limit is denoted by f ′(z0) or by
df

dz
(z0), and we refer to it as the complex

derivative of f(z) at z0. Thus

df

dz
(z0) = f ′(z0) = lim

z→z0

f(z)− f(z0)

z − z0
.

It is often useful to write the difference quotient in the form

f(z0 +∆z)− f(z0)

∆z

so that z − z0 is replaced by ∆z. Then

f ′(z0) = lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
.

Theorem 2.22. If f(z) is differentiable at z0, then f(z) is continuous at z0.

Theorem 2.23. The complex derivative satisfies the usual rules of differentiating sums, products and quo-
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tients. The rules are

(cf)′(z) = cf ′(z), (2.1)

(f + g)′(z) = f ′(z) + g′(z), (2.2)

(fg)′(z) = f(z)g′(z) + f ′(z)g(z), (2.3)

(f/g)′(z) =
g(z)f ′(z)− f(z)g′(z)

g(z)2
, g(z) ̸= 0. (2.4)

Here we are assuming that f(z) and g(z) are differentiable at z, and that c is any complex constant.

Theorem 2.24 (Chain Rule). Suppose that g(z) is differentiable at z0, and suppose that f(w) is differ-

entiable at w0 = g(z0). Then the composition (f ◦ g)(z) = f(g(z)) is differentiable at z0 and

(f ◦ g)′(z0) = f ′(g(z0))g
′(z0).

Alternatively, we can write the chain rule as

df

dz
=

df

dw

dw

dz
.

Definition 2.25. A function f(z) is analytic on the open set U if f(z) is (complex) differentiable at

each point of U and the complex derivative f ′(z) is continuous on U .

2.3 The Cauchy-Riemann Equations

Theorem 2.26. Let f = u + iv be defined on a domain D in the complex plane, where u and v are real-

valued. Then f(z) is analytic on D if and only if u(x, y) and v(x, y) have continuous first-order partial

derivatives that satisfy
∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

These equations are called the Cauchy-Riemann equations for u and v.

Corollary 2.27. If f(z) is analytic on a domain D and f ′(z) = 0 on D, then f(z) is constant.

Corollary 2.28. If f(z) is analytic and real-valued on a domain D, then f(z) is constant.

2.4 Inverse Mappings and the Jacobian

Definition 2.29. Let f = u+iv be analytic on a domain D. We may regard D as a domain in the Euclidean

plane R2 and f as a mapping from D to R2 with components (u(x, y), v(x, y)). The Jacobian matrix of

this map is

Jf =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
,

and its determinant is

det Jf =
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
.

Theorem 2.30. If f(z) is analytic, then its Jacobian matrix (as a map of R2 to R2) has determinant

det Jf = |f ′(z)|2.
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Theorem 2.31. Suppose f(z) is analytic on a domain D, z0 ∈ D, and f ′(z0) ̸= 0. Then there is an disk

U ⊂ D containing z0 such that f(z) is one-to-one on U , the image V = f(U) of U is open, and the inverse

function

f−1 : V → U

is analytic and satisfies

(f−1)′(f(z)) = 1/f ′(z), z ∈ U. (2.5)

2.5 Harmonic Functions

Definition 2.32. The equation
∂2u

∂x2
1

+ . . .+
∂2u

∂x2
n

= 0

is called Laplace’s equation. The operator

∆ =
∂2

∂x2
1

+ . . .+
∂

∂x2
n

is called the Laplacian. In terms of the operator, Laplace’s equation is simply ∆u = 0. Smooth functions

u(x1, . . . , xn) that satisfy Laplace’s equation are called harmonic functions. For complex functions, we

will only be concerned about the solutions of the equation

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

= 0.

Definition 2.33. We say that a function u(x, y) is harmonic if all of its first- and second-order partial

derivatives exist and are continuous and satisfy Laplace’s equation.

Theorem 2.34. If f = u + iv is analytic, and the functions u and v have continuous second-order partial

derivatives, then u and v are harmonic.

Definition 2.35. If u is harmonic on a domain D, and v is a harmonic function such that f = u + iv is

analytic, we say that v is a harmonic conjugate of u. The harmonic conjugate is unique up to adding a

constant.

Theorem 2.36. Let D be an open disk, or an open rectangle with sides parallel to the axes, and let u(x, y)

be an harmonic function on D. Then there is a harmonic function v(x, y) on D such that f = u + iv is

analytic on D. The harmonic conjugate v is unique, up to a constant.

2.6 Conformal Mappings

Definition 2.37. Let γ(t) = x(t) + iy(t), 0 ≤ t ≤ 1, be a smooth parameterized curve terminating at

z0 = γ(0). We refer to

γ′(0) = lim
t→0

γ(t)− γ(0)

t
= x′(0) + iy′(0)

as the tangent curve to the curve γ at z0. It is the complex representation of the usual tangent vector.

We define the angle between two curves at z0 to be the angle between their tangent vectors at z0.

Theorem 2.38. If γ(t), 0 ≤ t ≤ 1, is a smooth parameterized curve terminating at z0 = γ(0), and f(z) is

analytic, then the tangent to the curve f(γ(t)) terminating at f(z0) is

(f ◦ γ)′(0) = f ′(z0)γ
′(0).
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Definition 2.39. A function is conformal if it preserves angles. More precisely, a smooth complex-valued

function g(z) is conformal at z0 if wherenever γ0 and γ1 are two curves terminating at z0 with nonzero

tangents, then the curves g ◦ γ0 and g ◦ γ1 have nonzero tangents at g(z0) and the angle from (g ◦ γ0)′(z0)
to (g ◦ γ1)′(z0) is the same as the angle from γ′

0(z0) to γ′
1(z0).

Definition 2.40. A conformal mapping of one domain D onto another V is a continuously differentiable

function that is conformal at each point of D and that maps D one-to-one onto V .

Theorem 2.41. If f(z) is analytic at z0 and f ′(z0) ̸= 0, then f(z) is conformal at z0.

2.7 Fractional Linear Transformations

Definition 2.42. A fractional linear transformation is a function of the form

w = f(z) =
az + b

cz + d
,

where a, b, c, d are complex constants satisfying ad − bc ̸= 0. The transformations are also called Möbius

transformations. Special cases of fractional linear transformations include translations z → z + b, dila-

tions z → az, and the inversion z → 1/z. A function of the form f(z) = az+ b, where a ̸= 0, is also called

an affine transformation.

Theorem 2.43. Given three distinct points z0, z1, z2 in the extended complex plane, and given any three

distinct values w0, w1, w2 in th extended complex plane, there is a unique fractional linear transformation

w = w(z) such that w(z0) = w0, w(z1) = w1, and w(z2) = z2.

Theorem 2.44. Every fractional linear transformations is a composition of dilations, translations, and

inversion.

Theorem 2.45. A fractional linear transformation maps circles in the extended complex plane to circles.

3 Line Integrals and Harmonic Functions

3.1 Line Integrals and Green’s Theorem

Definition 3.1. A path in the plane from A to B is a continuous function t 7→ γ(t) on some parameter

interval a ≤ t ≤ b. such that γ(a) = A and γ(b) = B. The path is simple if γ(s) ̸= γ(t) when s ̸= t. The

path is closed if it starts and ends at the same point, that is, γ(a) = γ(b). A simple closed path is a

closed path γ such that γ(s) ̸= γ(t) for a ≤ s < t < b.

Lemma 3.2. If γ(t), a ≤ t ≤ b, is a path from A to B, and if ϕ(s), α ≤ s ≤ β, is a strictly increasing

continuous function satisfying ϕ(α) = a and ϕ(β) = b, then the composition γ(ϕ(s)), α ≤ s ≤ β is also a

path form A to B.

Definition 3.3. The trace of a path γ is its image γ([a, b]), which is a subset of the plane.

Definition 3.4. A smooth path is a path that can be represented in the form γ(t) = (x(t), y(t)), a ≤ t ≤ b

where the functions x(t) and y(t) are smooth. A piecewise smooth path is a concatenation of smooth

paths. A curve is a (usually) smooth or piecewise smooth path.
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Definition 3.5. Let γ be a smooth path on the complex plane and let P (x, y) and Q(x, y) be continuous

complex-valued functions. We consider successive points along the path and form the sum∑
P (xj , yj)(xj+1 − xj) +

∑
Q(xj , yj)(yj+1 − yj). (3.1)

If these sums have a limit as the distance between the succesive point tend to 0, we define the limit to be

the line integral of P dx+Qdy along γ and denote it by∫
γ

P dx+Qdy. (3.2)

Lemma 3.6. Suppose that path γ(t) = (x(t), y(t)), a ≤ t ≤ b is continuously differentiable, that is, the

parameter functions x(t) and y(t) are continuously differentiable. Then (3.2) can be written as∫
γ

P dx+Qdy =

∫ b

a

P (x(t), y(t))
dx

dt
dt+

∫ b

a

Q(x(t), y(t))
dy

dt
dt. (3.3)

Thus to compute the line integral, we parameterize the curve by t → (x(t), y(t)) and calculate dx/dt and

dy/dt and plug these into the definite integral in (3.3).

Definition 3.7. A domain D has piecewise smooth boundary if the boundary of D can be decomposed

into a finite number of smooth curves meeting only at the endpoints. We denote the boundary of D by ∂D.

For the purposes of integration, the orientation of D is chosen so that D lies on the left of a curve in ∂D

as we traverse the boundary curve in the positive direction, as the parameter value increases.

Theorem 3.8 (Green’s Theorem). Let D be a bounded domain in the plane whose boundary ∂D consists

of a finite number of disjoint piecewise smooth closed curves. Let P and Q be continuously differentiable

functions on D ∪ ∂D. Then ∫
∂D

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy. (3.4)

3.2 Independence of Path

Definition 3.9. If h(x, y) is a continuously differentiable complex-valued function, we define the differential

dh of h by

dh =
∂h

∂x
dx+

∂h

∂y
dy.

We say that a differential P dx + Qdy is exact if P dx + Qdy = dh for some function h. The function h

plays the role of the antiderivative from single-variable calculus.

Theorem 3.10 (Fundamental Theorem of Calculus, Part I). If γ is a piecewise smooth curve from A

to B, and if h(x, y) is continuously differentiable on γ, then∫
γ

dh = h(B)− h(A). (3.5)

Definition 3.11. Let P and Q be continuous complex-valued functions on a domain D. We say that a line

integral
∫
P dx + Qdy is independent of path in D if for any two points A and B in D, the integrals∫

γ
P dx+Qdy are the same for any path γ between A and B. This is equivalent to saying

∫
γ
P dx+Qdy = 0

for any closed path in D.

Lemma 3.12. Let P and Q be continuous complex-valued functions on a domain D. Then
∫
P dx + Qdy

is independent of path in D if and only if P dx+Qdy is exact, that is, there is a continuously differentiable

function h(x, y) such that dh = P dx+Qdy. Moreover, the function h is unique, up to adding a constant.
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Lemma 3.13. We say that a differential is closed on D if

∂P

∂y
=

∂Q

∂x
. (3.6)

This is precisely the condition that the integrand in Green’s theorem is zero. Thus Green’s theorem implies

that if P dx + Qdy is closed on D, then
∫
∂U

P dx + Qdy = 0 for any bounded domain D with piecewise

smooth boundary such that U is contained in D.

Lemma 3.14. Exact differentials are closed.

Theorem 3.15 (Fundamental Theorem of Calculus, Part II). Let P and Q be continuously differen-

tiable complex-valued functions on a domain D. If D is a star-shaped domain and the differential P dx+Qdy

is closed on D, then P dx+Qdy is exact on D.

Remark. In general, for a differential P dx+Qdy,

independent of path ⇐⇒ exact =⇒ closed.

For star-shaped domains, it is additionally true that

independent of path ⇐⇒ exact ⇐⇒ closed.

Theorem 3.16. Let D be a domain, and let γ0(t) and γ1(t), a ≤ t ≤ b, be two paths in D from A to

B. Suppose γ0 can be continually deformed to γ1, in the sense that for 0 ≤ s ≤ 1 there are paths γs(t),

a ≤ t ≤ b, from A to B such that γs(t) depends continuously on s and t for 0 ≤ s ≤ 1, a ≤ t ≤ b. Then∫
γ0

P dx+Qdy =

∫
γ1

P dx+Qdy

for any closed differential P dx+Qdy on D.

Theorem 3.17. Let D be a domain, and let γ0(t) and γ1(t), a ≤ t ≤ b, be two closed paths in D. Suppose

γ0 can be continually deformed to γ1, in the sense that for 0 ≤ s ≤ 1 there are paths γs(t), a ≤ t ≤ b, such

that γs(t) depends continuously on s and t for 0 ≤ s ≤ 1, a ≤ t ≤ b. Then∫
γ0

P dx+Qdy =

∫
γ1

P dx+Qdy

for any closed differential P dx+Qdy on D.

3.3 Harmonic Conjugates

Lemma 3.18. If u(x, y) is harmonic, then the differential

−∂u

∂y
dy +

∂v

∂x
dy (3.7)

is closed.

Theorem 3.19. Any harmonic function u(x, y) on a star-shaped domain D (as a disk or rectangle) has a

harmonic conjugate function v(x, y) on D.
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3.4 The Mean Value Property

Definition 3.20. Let h(z) be a continuous real-valued function on a domain D. Let z0 ∈ D, and suppose

D contains the disk {|z − z0| < ρ}. We define the average value of h(z) on the circle {|z − z0| = r} to be

A(r) =

∫ 2π

0

h(z0 + reiθ)
dθ

2π
, 0 < r < ρ.

Theorem 3.21. If u(z) is a harmonic function on a domain D, and if the disk {|z − z0| < ρ} is contained

in D, then

u(z0) =

∫ 2π

0

u(z0 + reiθ)
dθ

2π
, 0 < r < ρ. (3.8)

In other words, the average value of a harmonic function on the boundary circle of any disk contained in D

is its value at the center of the disk.

Definition 3.22. We say that a continuous function h(z) on a domain D has the mean value property if

for every point z0 ∈ D, h(z0) is the average of its value over any small circle centered at z0. More formally,

for any z0 ∈ D, there is an ϵ > 0 such that

h(z0) =

∫ 2π

0

h(z0 + reiθ)
dθ

2π
, 0 < r < ϵ.

Harmonic functions satisfy the mean value property. The converse is also true: continuous functions that

satisfy the mean value property are harmonic functions (Section 10).

3.5 The Maximum Principle

Theorem 3.23 (Strict Maximum Principle, Real Version). Let u(z) be a real-valued harmonic func-

tion on a domain D such that u(z) ≤ M for all z ∈ D. If u(z0) = M for some z0 ∈ D, then u(z) = M for

all z ∈ D.

Theorem 3.24 (Strict Maximum Principle, Complex Version). Let h(z) be a complex-valued har-

monic function on a domain D such that |h(z)| ≤ M for all z ∈ D. If |h(z0)| = M for some z0 ∈ D, then

h(z) is constant on D.

Theorem 3.25 (Maximum Principle). Let h(z) be a complex-valued harmonic function on a bounded

domain D such that h(z) extends continuously to the boundary ∂D of D. If |h(z)| ≤M for all z ∈ ∂D, then

|h(z)| ≤M for all z ∈ D.

3.6 Applications to Fluid Dynamics

This section contains no definitions or theorems.

3.7 Other Applications to Physics

This section contains no definitions or theorems.
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4 Complex Integration and Analyticity

4.1 Complex Line Integrals

Definition 4.1. For complex analysis, it is convenient to define dz = dx+ i dy. According, to this notation,

if h(z) is a complex-valued function on a curve γ, then∫
γ

h(z) dz =

∫
γ

h(z) dx+ i

∫
γ

h(z) dy.

Additionally, we define the infinitesimal arc length ds by |dz|:

|dz| = ds =
√

(dx)2 + (dy)2.

This means that if a curve γ is parameterized by z(t) = x(t) + iy(t), then

∫
γ

h(z) |dz| =
∫
γ

h(z) ds =

∫ b

a

h(z(t))

√(
dx

dt

)2

+

(
dy

dy

)2

.

In particular, the length of γ is

L =

∫
γ

|dz| =
∫ b

a

√(
dx

dt

)2

+

(
dy

dy

)2

.

Theorem 4.2. Suppose γ is a piecewise smooth curve. If h(z) is a continuous function on γ, then∣∣∣∣∫
γ

h(z) dz

∣∣∣∣ ≤ ∫
γ

|h(z)| |dz|. (4.1)

Further if γ has length L and |h(z)| ≤M on γ, then∣∣∣∣∫
γ

h(z) dz

∣∣∣∣ ≤ML. (4.2)

The estimate (4.1) is the triangle inequality for integrals. The estimate (4.2) is called the ML-estimate.

4.2 Fundamental Theorem of Calculus for Analytic Functions

Definition 4.3. Let f(z) be a continuous function on a domain D. A function F (z) on D is a (complex)

primitive for f(z) if F (z) is analytic and F ′(z) = f(z).

Theorem 4.4 (Part I). If f(z) is continuous on a domain D, and if F (z) is a primitive for f(z), then∫ B

A

f(z) dz = F (B)− F (A),

where the integral can be taken over any path in D from A to B.

Theorem 4.5 (Part II). Let D be a star-shaped domain and let f(z) be analytic on D. Then f(z) has a

primitive on D, and the primitive is unique up to adding a constant. A primitive for f is given explicitly by

F (z) =

∫ z

z0

f(ζ) dζ, z ∈ D,

where z0 is any fixed point of D, and where the integral can be taken along any path in D from z0 to z.
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4.3 Cauchy’s Theorem

Theorem 4.6. A continuously differentiable function f(z) on D is analytic if and only if the differential

f(z) dz is closed.

Theorem 4.7 (Cauchy’s Theorem). Let D be a bounded domain with piecewise smooth boundary. If

f(z) is an analytic function on D that extends smoothly to ∂D, then∫
∂D

f(z) dz = 0.

4.4 Cauchy Integral Formula

Theorem 4.8 (Cauchy Integral Formula). LetD be a bounded domain with piecewise smooth boundary.

If f(z) is analytic on D, and f(z) extends smoothly to the boundary of D, then

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw, z ∈ D.

Theorem 4.9. Let D be a bounded domain with piecewise smooth boundary. If f(z) is analytic on D, and

f(z) extends smoothly to the boundary of D, then f(z) has complex derivatives of all orders on D, which

are given by

f (m)(z) =
m!

2πi

∫
∂D

f(w)

(w − z)m+1
dw z ∈ D,m ≥ 0.

Corollary 4.10. If f(z) is analytic on a domain D, then f(z) is infinitely differentiable, and the successive

complex derivatives f ′(z), f ′′(z), . . . are all analytic on D.

4.5 Liouville’s Theorem

Theorem 4.11 (Cauchy estimates). Suppose f(z) is analytic for |z−z0| ≤ ρ. If |f(z)| ≤M for |z−z0| = ρ,

then ∣∣∣f (m)(z0)
∣∣∣ ≤ m!

ρm
M, m ≥ 0.

Definition 4.12. We define an entire function to be a function that is analytic on the entire complex

plane.

Theorem 4.13 (Liouville’s Theorem). A bounded entire function is constant.

4.6 Morera’s Theorem

Theorem 4.14 (Morera’s Theorem). Let f(z) be a continuous function on a domainD. If
∫
∂R

f(z) dz = 0

for every closed rectangle R in D with sides parallel to the coordinate axis, then f(z) is analytic on D.

Theorem 4.15. Suppose that h(t, z) is a continuous, complex-valued function, defined for a ≤ t ≤ b and

z ∈ D. If for each fixed t, h(t, z) is an analytic function of z ∈ D, then

H(z) =

∫ b

a

h(t, z) dz, z ∈ D,

is analytic on D.

Theorem 4.16. Suppose that h(z) is a continuous function on a domain D that is analytic on D \ R, that
is, on the part of D not lying on the real axis. Then f(z) is analytic on D.
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4.7 Goursat’s Theorem

Theorem 4.17 (Goursat’s Theorem). If f(z) is a complex-valued function on a domain D such

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists at each point z0 of D, then f(z) is analytic on D.

4.8 Complex Notation and Pompeiu’s Formula

Definition 4.18. Many results in complex analysis can be expressed in terms of the first-order differential

operators
∂

∂z
=

1

2

[
∂

∂x
− i

∂

∂y

]
,

∂

∂z
=

1

2

[
∂

∂x
+ i

∂

∂y

]
.

Thus, we can think of ∂f/∂z as an average of the derivatives of f(z) in the x and in the iy directions. When

deriving the Cauchy-Riemann equations, we derived two equations for f ′(z),

f ′(z) =
∂f

∂x
and f ′(z) = −i∂f

∂y
.

Taking the average of these expressions, we get

f ′(z) =
∂f

∂z
, (4.3)

assuming that f(z) is analytic. If we let f = u+ iv, then

∂f

∂z
=

1

2

[
∂u

∂x
− ∂v

∂y

]
+

i

2

[
∂u

∂y
+

∂v

∂x

]
Therefore, we obtain the equation

∂f

∂z
= 0 (4.4)

is equivalent to the Cauchy-Riemann equations. This equation is called the complex form of the Cauchy-

Riemann equations.

Theorem 4.19. Let f(z) be a continuously differentiable function on a domain D. Then f(z) is analytic

if and only if f(z) satisfies that complex form (4.4) of the Cauchy-Riemann equations. If f(z) is analytic,

then the derivative of f(z) is given by (4.3).

Theorem 4.20. Let f(z) be a continuously differentiable function on a domainD. Suppose that the gradient

of f(z) does not vanish at any point on D, and that f(z) is conformal. Then f(z) is analytic on D, and

f ′(z) ̸= 0 on D.

Theorem 4.21. If D is a bounded domain in the complex plane with piecewise smooth boundary, and if

g(z) is a smooth function on D ∪ ∂D, then∫
∂D

g(z) dz = 2i

∫∫
D

∂g

∂z
dx dy.

Theorem 4.22 (Pompeiu’s Formula). Suppose D is a bounded domain in the complex plane with piece-

wise smooth boundary. If g(z) is a smooth complex-valued function on D ∪ ∂D, then

g(w) =
1

2πi

∫
∂D

g(z)

z − w
dz − 1

π

∫∫
D

∂g

∂z

1

z − w
dxdy, w ∈ D. (4.5)

The formula (4.5) is also known as the Cauchy-Green formula.
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5 Power Series

5.1 Infinite Series

Definition 5.1. A series
∑∞

k=0 ak of complex numbers is said to converge to S if sequence of partial sums

Sk = a0 + . . .+ ak converges to S. We denote the sum S by
∑∞

k=0 ak or
∑

ak. Any statement about series

is just a statement about sequences. Thus if
∑

ak = A and
∑

bk = B, then
∑

(ak + bk) = A + B and∑
cak = cA.

Theorem 5.2 (Comparison Test). If 0 ≤ ak ≤ rk, and if
∑

rk converges, then
∑

ak converges and∑
ak ≤

∑
rk.

Theorem 5.3. If
∑

ak converges, then ak → 0 as k →∞.

Definition 5.4. The series
∑

ak is said to converge absolutely if
∑
|ak| converges.

Theorem 5.5. If
∑

ak converges absolutely, then
∑

ak converges, and∣∣∣∣∣
∞∑
k=0

ak

∣∣∣∣∣ ≤
∞∑
k=0

|ak|.

5.2 Sequences and Series of Functions

Definition 5.6. Let {fj} be a sequence of complex-valued functions defined on some set E. We set that

the sequence {fj} converges pointwise on E if for each point x ∈ E, the sequence of complex numbers

{fj(x)} converges. The limit f(x) of {fj(x)} is then a complex-valued function on E.

Definition 5.7. We set that the sequence {fj} of functions on E converges uniformly to f on E if

|fj(x)− f(x)| ≤ ϵj for all x ∈ E, where ϵj → 0 as j →∞. We can think of ϵj as the worst-case estimator of

the difference |fj(x) − f(x)|, that is ϵj = sup |fj(x) − f(x)|. Note that if {fj} converges uniformly to f on

E, then {fj} converges pointwise to f on E.

Theorem 5.8. Let {fj} be a sequence of complex-valued functions defined on a subset E of the complex

plane. If each fj is continuous on E and {fj} converges uniformly to f on E, then f is continuous on E.

Theorem 5.9. Let γ be a piecewise smooth curve in the complex plane. If {fj} is a sequence of complex-

valued functions on γ, and {fj} converges uniformly to f on γ, then
∫
γ
fj(z) dz converges to

∫
γ
f(z) dz.

Definition 5.10. We say that series converges pointwise on E if the sequence of partial sums converges

pointwise on E, and the series converges uniformly on E if the sequence of partial sums converges

uniformly on E.

Theorem 5.11 (Weierstrass M-Test). Suppose Mk ≥ 0 and
∑

Mk converges. If gk(z) are complex-

valued functions on a set E such that |gk(x)| ≤ Mk for all x ∈ E, then
∑

gk(x) converges uniformly on

E.

Theorem 5.12. If {fk(z)} is a sequence of analytic functions on a domain D that converges uniformly to

f(z) on D, then f(z) is analytic on D.

Theorem 5.13. Suppose that fk(z) is analytic for |z − z0| ≤ R, and suppose that the sequence {fk(z)}
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converges uniformly to f(z) for |z − z0| ≤ R. Then for each r < R and for each m ≥ 1, the sequence of mth

derivatives {f (m)
k (z)} converges uniformly to f (m)(z) for |z − z0| ≤ r.

Definition 5.14. We say that a sequence {fk(z)} of analytic functions on a domain D converges normally

to the analytic function f(z) on D if it converges uniformly to f(z) on each closed disk contained in D.

Theorem 5.15. Suppose that {fk(z)} is a sequence of analytic functions on a domain D that converges

normally on D to the analytic functions f(z). Then for each m ≥ 1, the sequence of mth derivatives

{f (m)
k (z)} converges normally to f (m)(z) on D.

5.3 Power Series

Definition 5.16. A power series (centered at z0) is a series of the form
∑∞

k=0 ak(z − z0)
k.

Theorem 5.17. Let
∑

akz
k be a power series. Then there is an R, 0 ≤ R ≤ ±∞, such that

∑
akz

k

converges absolutely if |z| < R, and
∑

akz
k does not converge if |z| < R. For each fixed r satisfying r < R,

the series
∑

akz
k converges uniformly for |z| ≤ r.

Definition 5.18. We call R the radius of convergence of the series
∑

akz
k. The radius of convergence

depends only on the tail of the series.

Theorem 5.19. Suppose
∑

akz
k is a power series with radius of convergence R > 0. Then the function

f(z) =

∞∑
k=0

akz
k, |z| < R

is analytic. The derivatives of f(z) are obtained by differentiating the series term by term,

f ′(z) =
∑
k=1

kakz
k−1, f ′′(z) =

∞∑
k=2

k(k − 1)akz
k−2, |z| < R,

and similarly for the higher-order derivatives. The coefficients of the series are given by

ak =
1

k!
f (k)(0), k ≥ 0.

Theorem 5.20 (Ratio Test). If |ak/ak+1| has a limit as k →∞, either finite or +∞, then the limit is the

radius of convergence R of
∑

akz
k,

R = lim
k→∞

∣∣∣∣ ak
ak+1

∣∣∣∣ .
Theorem 5.21 (Root Test). If k

√
|ak| has a limit as k → ∞, either finite or +∞, then the radius of

convergence R of
∑

akz
k is given by

R =
1

lim k
√
|ak|

. (5.1)

Definition 5.22. There is a more general form of the formula (5.1) called theCauchy-Hadamard formula,

that gives the radius of convergence for any power series in terms of the lim sup,

R =
1

lim sup k
√
|ak|
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5.4 Power Series Expansion of an Analytic Function

Theorem 5.23. Suppose that f(z) is analytic for |z− z0| < ρ. Then f(z) is represented by the power series

f(z) =

∞∑
k=0

ak(z − z0)
k, |z − z0| < ρ,

where

ak =
f (k)(z0)

k!
k ≥ 0,

and where the power series has radius of convergence R ≥ ρ. For any fixed r, 0 < r < ρ, we have

ak =
1

2πi

∮
|ζ−z0|=r

f(ζ)

(ζ − z0)k+1
dζ, k ≥ 0.

Further, if |f(z)| ≤M for |z − z0| = r, then

|ak| ≤
M

rk
, k ≥ 0.

Corollary 5.24. Suppose that f(z) and g(z) are analytic on |z − z0| < r. If f (k)(z0) = g(k)(z0) for k ≥ 0,

then f(z) = g(z) for |z − z0| < r.

Corollary 5.25. Suppose that f(z) is analytic at z0 with power series expansion f(z) =
∑

ak(z − z0)
k

centered at z0. Then the radius of convergence of the power series is the largest number R such that f(z)

extends to be analytic on the disk {|z − z0| < R}.

5.5 Power Series Expansions at Infinity

Definition 5.26. We say a function f(z) is analytic at z = ∞ if the function g(w) = f(1/w) is analytic

at w = 0. If f(z) is analytic at ∞, then g(w) = f(1/w) has the power series expansion centered at w = 0,

g(w) =

∞∑
k=0

bkw
k = b0 + b1w + b2w

2 + b3w
3 + · · · , |w| < ρ.

Thus f(z) is represented by a convergent series expansion in descending powers of z,

f(z) =

∞∑
k=0

bk
zk

= b0 +
b1
z

+
b2
z2

+
b3
z3

+ · · · , |z| > 1

ρ
.

This series converges absolutely for |z| > 1/ρ, and for any r > 1/ρ it converges uniformly for |z| ≥ r.

A formula for the coefficients can be obtained by multiplying the series zm and integrating term by term

around the circle |z| = r. We have∫
|z|=r

f(z)zm dz =

∫
|z|=r

(∑
bkz

−k
)
zm dz =

∑
bk

∫
|z|=r

zm−k dz = 2πibm+1.

Thus the coefficient bk of 1/zk is given by

bk =
1

2πi

∫
|z|=r

f(z)zk−1 dz, k ≥ 0.
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5.6 Manipulation of Power Series

Remark. Let f(z) and g(z) be analytic at 0, with power series representation

f(z) =

∞∑
k=0

akz
k, g(z) =

∞∑
k=0

bkz
k,

and let c be a complex constant. The power series of the sum f(z) + g(z) is obtained by simply adding

coefficients,

f(z) + g(z) =

∞∑
k=0

(ak + bk)z
k.

The power series of cf(z) is obtained by multiplying coefficients by c,

cf(z) =

∞∑
k=0

cakz
k.

The product f(z)g(z) is given by

f(z)g(z) =

∞∑
k=0

ckz
k,

where the coefficients ck are given by

ck = akb0 + ak−1b1 + · · ·+ a1bk−1 + a0bk, k ≥ 0.

If g(0) = 1, then the reciprocal 1/g(z) can be computed. The power series expansion of g(z) has the form

g(z) = 1 +

∞∑
k=1

bkz
k = 1 + b1z + b2z

2 + · · · .

If z is near 0, the sum
∑∞

k=1 bkz
k is small, and we can expand 1/g(z) in a geometric series

1

g(z)
=

1

1 +
∑∞

k=1 bkz
k
= 1−

( ∞∑
k=1

bkz
k

)
+

( ∞∑
k=1

bkz
k

)2

−

( ∞∑
k=1

bkz
k

)3

+ · · · .

5.7 The Zeros of an Analytic Function

Definition 5.27. Let f(z) be analytic at z0 and suppose f(z0) = 0. We say that f(z) has a zero of order

N at z0 if

f(z0) = f ′(z0) = . . .+ f (N−1)(z0) = 0

If we write f(z) using its power series representation,

f(z0) = aN (z − z0)
N + aN+1(z − z0)

N+1 + . . .

then we can factor out (z − z0)
N and write

f(z0) = (z − z0)
Nh(z), (5.2)

where h(z) is analytic at z0 and h(z0) = aN ̸= 0. Conversely, if there is a factorization (5.2) where h(z) is

analytic at z0 and h(z0) ̸= 0, then the leading term in the power series for f(z) is h(z0)(z − z0)
N , and f(z)

has a zero of order N at z0. A zero of order one is called a simple zero, and a zero of order two is called a

double zero.
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Definition 5.28. We say that a point z0 ∈ E is an isolated point of the set E if there is ρ > 0 such that

|z − z0| ≥ ρ for all points in E other than z0. In other words, z0 is an isolated point of E if z0 is a positive

distance from E \ {z0}. If E is a set such that every point of E is an isolated point of E, we say that the

points of E are isolated.

Theorem 5.29. If D is a domain, and f(z) is an analytic function on D that is not identically zero, then

the zeros of f(z) are isolated.

Theorem 5.30 (Uniqueness Principle). If f(z) and g(z) are analytic on a domain D, and if f(z) = g(z)

for all z belonging to a set that has a nonisolated point, then f(z) = g(z) for all z ∈ D.

Theorem 5.31 (Principle of Permanence of Functional Equations). Let D be a domain, and let E

be a subset of D that has a nonisolated point. Let F (z, w) be a function defined for z, w ∈ D such that

F (z, w) is analytic in z for each fixed w ∈ D and analytic in w for each fixed z ∈ D. If F (z, w) = 0 whenever

z and w both belong to E, then F (z, w) = 0 for all z, w ∈ D.

5.8 Analytic Continuation

Lemma 5.32. Suppose D is a disk, f(z) is analytic on D, and R(z1) is the radius of convergence of the

power series expansion of f(z) about a point z1 ∈ D. Then

|R(z1)−R(z2)| ≤ |z1 − z2|, z1, z2 ∈ D.

Definition 5.33. Suppose
∑

an(z − z0)
n represents a function f(z) near z0. Let γ(t), a ≤ t ≤ b, be a

path starting at z0 = γ(a). We say that f(z) is analytically continuable along γ if for each t there is a

convergent power series

ft(z) =

∞∑
n=0

an(t)(z − γ(t))n, |z − γ(t)| < r(t), (5.3)

such that fa(z) is the power series representing f(z) at z0, and such that when s is near t, then fs(z) = ft(z)

for z in the intersection of disks of convergence. By the uniqueness principle, the series ft(z) determines

uniquely each of the series fs(z) for s near t. It follows that the series fb(z) is uniquely determined by fa(z).

We refer to fb(z) as the analytic continuation of f(z) along γ, where we regard fb(z) either as a

power series or as an analytic function defined near γ(b). Since the coefficients an(t) (5.3) are given by

an(s) = f
(m)
t (γ(s))/m! for s near t, the coefficients depend continuously on the parameter t.

Theorem 5.34. Suppose f(z) can be continued analytically along the path γ(t), a ≤ t ≤ b. Then the

analytic continuation is unique. Further, for each n ≥ 0 the coefficient an(t) of the series (5.3) depends

continuously on t, and the radius of convergence of the series (5.3) depends continuously on t.

Lemma 5.35. Suppose f(z) is analytic at z0, and suppose that γ(t), a ≤ t ≤ b, is a path from z0 = γ(a)

to z1 = γ(b) along which f(z) has analytic continuation ft(z). Then the radius of convergence R(t) of the

power series (5.3) varies continuously with t, and there is a δ > 0 such that R(t) ≥ δ for all t, a ≤ t ≤ b.

Lemma 5.36. Let f , γ, and δ be as above. If σ(t), a ≤ t ≤ b is another path from z0 to z1 such that

|σ(t)− γ(t)| < δ for a ≤ t ≤ b, then there is an analytic continuation gt(z) of ft(z) along σ, and the terminal

series gb(z) centered at σ(b) = z1 coincides with fb(z).

Theorem 5.37 (Monodromy Theorem). Let f(z) be analytic at z0. Let γ0(t) and γ1(t), a ≤ t ≤ b, be

two paths from z0 to z1 along which f(z) can be continued analytically. Suppose γ0(t) can be deformed
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continuously to γ1(t) by paths γs(t), 0 ≤ s ≤ 1, from z0 to z1 such that f(z) can be continued analytically

along each path γs. Then the analytic continuations of f(z) along γ0 and along γ1 coincide at z1.

6 Laurent Series and Isolated Singularities

6.1 Laurent Decomposition

Theorem 6.1 (Laurent Decomposition). Suppose 0 ≤ ρ < σ ≤ +∞, and suppose f(z) is analytic for

ρ < |z − z0| < σ. Then f(z) can be decomposed as a sum

f(z) = f0(z) + f1(z), (6.1)

where f0(z) is analytic for |z − z0| < σ, and f1(z) is analytic for |z − z0| > ρ and at ∞. If we normalize the

decomposition so that f1(∞) = 0, then the decomposition is unique.

Remark. To find such a decomposition (6.1), we apply Cauchy integral representation theorem on an annulus,

as follows. Choose r and s such that ρ < r < s < σ. The Cauchy integral formula for an annulus yields

f(z) =
1

2πi

∫
|ζ−z0|=s

f(ζ)

ζ − z
dζ − 1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ,

which is valid for r < |z − z0| < s. The function

f0(z) =
1

2πi

∫
|ζ−z0|=s

f(ζ)

ζ − z
dζ, |z − z0| < s,

is analytic for |z − z0| < s, and the function

f1(z) = −
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ, |z − z0| > r,

is analytic for |z− z0| > r and tends to 0 as z →∞. Thus we obtain the decomposition f(z) = f0(z)+ f1(z)

for r < |z − z0| < s.

Definition 6.2. If a function f(z) = f0(z) + f1(z) can be decomposed using Laurent Decomposition. Then

we can express the function using its Laurent series expansion

f(z) =

∞∑
k=−∞

ak(z − z0)
k, ρ < |z − z0| < σ,

which converges uniformly and absolutely on r ≤ |z − z0| ≤ s where ρ < r < s < σ. We can also express

f0(z) as a power series in z − z0,

f0(z) =

∞∑
k=0

ak(z − z0), |z − z0| < σ,

where the series converges absolutely, and for any s < σ it converges uniformly for |z − z0| ≤ s. Furhter, we

can express f1(z) as a series of negative powers of z − z0,

f1(z) =

−1∑
k=−∞

ak(z − z0)
k, |z − z0| > ρ.

This series converges absolutely, and for any r > ρ it converges uniformly for |z − z0| ≥ r.

27



Theorem 6.3 (Laurent Series Expansion). Suppose 0 ≤ ρ < σ ≤ ∞ and suppose f(z) is analytic for

ρ < |z − z0| < σ. Then f(z) has a Laurent series expansion that converges absolutely at each point on the

annulus and converges uniformly on each closed subannulus r ≤ |z − z0| < s where ρ < r < s < σ. The

coefficients are uniquely determined by f(z) for any fixed r, ρ < r < σ and are given by

an =
1

2πi

∮
|z−z0|=r

f(z)

(z − z0)n+1
dz, −∞ < n <∞.

6.2 Isolated Singularities of an Analytic Function

Definition 6.4. A point z0 is an isolated singularity of f(z) if f(z) is analytic in some punctured disk

{0 < |z − z0| < r} centered at z0. Suppose that f(z) has an isolated singularity at z0. Then f(z) has a

Laurent series expansion

f(z) =

∞∑
k=−∞

ak(z − z0)
k, 0 < |z − z0| < r.

Definition 6.5. The isolated singularity of f(z) at z0 is defined to be removable singularity if ak = 0 for

all k < 0. In this case, the Laurent series (6.1) becomes a power series

f(z) =

∞∑
k=0

ak(z − z0)
k, 0 < |z − z0| < r

If we define f(z0) = a0, the function f(z) becomes analytic on the entire disk {|z − z0| < r}.

Definition 6.6 (Riemann’s Theorem of Removable Singularities). Let z0 be an isolated singularity

of f(z). If f(z) is bounded near z0, then f(z) has a removable singularity at z0.

Definition 6.7. The isolated singularity of f(z) at z0 is defined to be a pole if there is N > 0 such that

a−N ̸= 0, but ak = 0 for all k < −N . The integer N is the order of the pole. In the case the Laurent series

(6.1) becomes

f(z) =

∞∑
k=−N

ak(z − z0)
k =

a−N

(z − z0)N
+ · · ·+ a−1

z − z0
+ a0 + a1(z − z0).

The sum of the negative powers,

P (z) =

−1∑
k=−N

ak(z − z0)
k =

a−N

(z − z0)N
+ · · ·+ a−1

z − z0
,

is called the principal part of f(z) at the pole z0. The principal part P (z) coincides with the summand

f1(z) in the Laurent decomposition f(z) = f0(z) + f1(z) given in the preceding section. The bad behavior

of f(z) at z0 is incorporated into P (z), in the sense that f(z)− P (z) is analytic at z0. A pole of order one

is called a simple pole, and a pole of order two is called a double pole.

Theorem 6.8. Let z0 be an isolated singularity of f(z). Then z0 is a pole of f(z) of order N if and only if

f(z) = g(z)/(z − z0)
N , where g(z) is analytic at z0 and g(z0) ̸= 0.

Theorem 6.9. Let z0 be an isolated singularity of f(z). Then z0 is a pole of f(z) of order N if and only if

1/f(z) is analytic at z0 and has a zero of order N .

Definition 6.10. We say that a function f(z) is meromorphic on a domain D if f(z) is analytic on D

except possibly at isolated singularities, each of which is a pole. A meromorphic function f at z0 is said to
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have order N at z0 if f(z) = (z − z0)
Ng(z) for some analytic function g at z0 such that g(z0) ̸= 0. The

order of the function 0 is defined to be +∞. If there are infinitely many poles of f(z) in D, then we can

arrange them in a sequence that accumulates only at the boundary of D.

Lemma 6.11. Sums and products of meromorphic functions are meromorphic. Quotients of meromorphic

functions are meromorphic, provided the denominator is not identically zero.

Theorem 6.12. Let z0 be an isolated singularity of f(z). Then z0 is a pole if and only if |f(z)| → ∞ as

z → z0.

Definition 6.13. The isolated singularity of f(z) at z0 is defined to be an essential singularity if ak ̸= 0

for infinitely many k < 0. Thus an isolated singularity that is neither removable nor a pole is declared to be

essential.

Theorem 6.14 (Casorati-Weierstrass Theorem). Suppose z0 is an essential isolated singularity of f(z).

Then for every complex number w0, there is a sequence zn → z0 such that f(zn)→ w0.

6.3 Isolated Singularity at Infinity

Definition 6.15. We say that f(z) has an isolated singularity at ∞ if f(z) is analytic outside some

bounding set, that is, if there is R > 0 such that f(z) is analytic for |z| > R. Thus f(z) has an isolated

singularity at ∞ if and only if g(w) = f(1/w) has an isolated singularity at w = 0.

We classify the isolated singularity of f(z) at ∞ according to the isolated singularity of g(w) at w = 0.

Suppose f(z) has the Laurent series expansion

f(z) =

∞∑
k=−∞

bkz
k, |z| > R.

The singularity of f(z) at f(z) = ∞ is removable if bk = 0 for all k > 0 in which case f(z) is analytic at

∞. The singularity of f(z) at f(z) = ∞ is essential if bk ̸= 0 for infinitely many k > 0. For fixed N ≥ 1,

f(z) has a pole of order N at ∞ if bN ≥ 0 while bk = 0 for k > N .

Suppose f(z) has a pole of order N at ∞. The Laurent series expansion of f(z) becomes

f(z) = bNzN + bN−1z
N−1 + · · ·+ b1z + b0 +

b−1

z
+ · · · , |z| > R,

where bN ̸= 0. We defined the principal part of f(z) at ∞ to be the polynomial

P (z) = bNzN + bN−1z
N−1 + · · ·+ b1z + b0.

6.4 Partial Fraction Decomposition

Theorem 6.16. A meromorphic function on the extended complex plane C∗ is rational.

Definition 6.17. If f(z) is analytic at ∞, we define P∞(z) to be the constant function f(∞). Otherwise,

f(z) has a pole at ∞ and we define P∞(z) to be the principal part of f(z) at ∞. Let z1, . . . , zm be the poles

of f(z) in the finite complex plane C, and let Pk(z) be the prinicpal part of f(z) at zk. Then

f(z) = P∞(z) +

m∑
j=1

Pj(z). (6.2)

The decomposition (6.2) is the called the partial fractions decomposition of the rational function f(z).
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Theorem 6.18. Every rational function has a partial frations decomposition, expressing it as a sum of a

polynomial in z and its principal parts at each of its poles in the finite complex plane.

6.5 Periodic Functions

Definition 6.19. A complex number ω is a period of a function f(z) if f(z+w) = f(z) whenever defined.

The function f(z) is periodic if it has period ω ̸= 0.

Theorem 6.20. If f(z) is analytic on the horizontal strip {α < Im (z) < β}, and f(z) is periodic with

period 1, then f(z) can be expanded in an absolutely convergent series of exponentials

f(z) =

∞∑
k=−∞

ake
2πikz, α < Im (z) < β.

The series converges uniformly on any smaller strip {α0 ≤ Im (z) ≤ β0} where α < α0 < β0 < β.

Theorem 6.21. Suppose f(z) is analytic on the half-plane {Im (z) > α}, and f(z) is periodic with period

1. If f(z) is bounded as Im (z) → +∞, then f(z) can be expanded in an absolutely convergent series of

exponentials

f(z) =

∞∑
k=0

ake
2πikz, Im (z) > α.

The series converges uniformly on any smaller half-plane {Im (z) ≥ α0}, where α0 > α.

Theorem 6.22. Suppose that f(z) is a nonconstant meromorphic function on the complex plane that is

periodic. Either there is a period ω1 for f(z) such that the periods of f(z) are the integral multiples nω1,

−∞ < m < ∞, or there are two periods ω1 and ω2 for f(z) that do not lie on the same line through the

origin such that the periods of f(z) are the integral combinations mω1 + nω2, −∞ < m,n <∞.

Definition 6.23. In the case that the periods of f(z) all lie on the same straight line through the origin,

we say that f(z) is simply periodic. Otherwise, we say that f(z) is doubly periodic.

Theorem 6.24. An entire function that is doubly periodic is constant.

6.6 Fourier Series

Definition 6.25. A complex Fourier series is a two-tailed series of the form

∞∑
k=−∞

cke
ikθ = · · ·+ c−2e

−2iθ + c−1e
−iθ + c0 + c1e

iθ + c2e
2iθ + · · · . (6.3)

If the Laurent series

f(z) =

∞∑
k=−∞

akz
k

converges uniformly on the circle {|z| = r}, then

f(reiθ) =

∞∑
k=−∞

akr
keikθ

is the Fourier series expansion of f(reiθ), regarded as a function of θ. The Fourier coefficients of the expansion

are the coefficients ck = akr
k.

30



Definition 6.26. We define the Fourier coefficients of any piecewise continuous function (or any integral

function) f(eiθ) to be

ck =

∫ π

−π

f(eiθ)e−ikθ dθ

2π
,−∞ < k <∞, (6.4)

and we associate f(eiθ) the Fourier series

f(eiθ) ∼
∞∑

k=−∞

cke
ikθ,

where ck is defined by (6.4). We call
∑

cke
ikθ the Fourier series of f(eiθ).

Theorem 6.27. If f(eiθ) is piecewise continuous (or more generally, square-integrable), with Fourier series

f(eiθ) ∼
∑∞

k=−∞ cke
ikθ, then for m,n ≥ 0 we have

n∑
k=−m

|ck|2 +
∫ π

−π

∣∣∣∣∣f(eiθ)−
n∑

k=−m

cke
ikθ

∣∣∣∣∣
2
dθ

2π
=

∫ π

−π

∣∣f(eiθ)∣∣2 dθ

2π
.

Theorem 6.28 (Bessel’s Inequality). If f(eiθ) is piecewise continuous (or more generally, square-integrable),

with Fourier series f(eiθ) ∼
∑∞

k=−∞ cke
ikθ, then

∞∑
k=−∞

|ck|2 ≤
∫ π

−π

∣∣f(eiθ)∣∣2 dθ

2π
.

Theorem 6.29. Suppose f(eiθ) is piecewise continuous (or more generally, square-integrable), with Fourier

series f(eiθ) ∼
∑∞

k=−∞ cke
ikθ. If f(eiθ) is differentiable at θ0, then the Fourier series of f(eiθ) converges to

f(eiθ0) at θ = θ0,

f(eiθ0) =

∞∑
−∞

cke
ikθ0 = lim

m,n→∞

n∑
k=−m

cke
ikθ0 .

Theorem 6.30. Suppose f(eiθ) is continuously differentiable function of θ, with Fourier series f(eiθ) ∼∑∞
k=−∞ cke

ikθ. Then the Fourier series of the derivative of f(eiθ) is obtained by differentiating term by

term,
d

dθ
f(eiθ) ∼

∑
ikcke

ikθ.

Corollary 6.31. If f(eiθ) is an n-times continuously differentiable function of θ, with Fourier series f(eiθ) ∼∑∞
k=−∞ cke

ikθ, then
∑∞

k=−∞ k2n|ck|2 <∞. Further, knck → 0 as k → ±∞.

Theorem 6.32. Suppose f(eiθ) is a twice continuously differentiable function of θ. Then the Fourier series

of f(eiθ) converges to f(eiθ) uniformly in θ.

7 The Residue Calculus

7.1 The Residue Theorem

Definition 7.1. Suppose z0 is an isolated singularity of f(z) and that f(z) has a Laurent series

f(z) =

∞∑
n=−∞

an(z − z0)
n, 0 < |z − z0| < ρ,
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We define the residue of f(z) at z0 to be the coefficient a−1 of 1/(z − z0) in this Laurent expansion,

Res [f(z), z0] = a−1 =
1

2πi

∮
|z−z0|=r

f(z) dz, (7.1)

where r is any fixed radius satisfying 0 < r < ρ.

Theorem 7.2. Let D be a bounded domain in the complex plane with piecewise smooth boundary. Suppose

that f(z) is analytic on D ∪ ∂D, except for a finite number of isolated singularities z1, . . . , zm in D. Then∫
∂D

f(z) dz = 2πi

m∑
j=1

Res [f(z), zj ]. (7.2)

We give four useful rules for calculating residues:

(1) If f(z) has a simple pole at z0, then

Res [f(z), z0] = lim
z→z0

(z − z0)f(z).

(2) If f(z) has a double pole at z0, then

Res [f(z), z0] = lim
z→z0

d

dz
[(z − z0)

2f(z)].

(3) If f(z) and g(z) are analytic at z0, and if g(z) has a simple zero at z0, then

Res

[
f(z)

g(z)
, z0

]
=

f(z0)

g′(z0)
.

(4) If g(z) is analytic and has a simple zero at z0, then

Res

[
1

g(z)
, z0

]
=

1

g′(z0)
.

7.2 Integrals Featuring Rational Functions

Remark. The residue theorem can be used to evaluate integral of the form∫ ∞

−∞

P (x)

Q(x)
dx.

For the integral to converge, P (z) and Q(z) must be polynomials and Q(z) has no zeroes on the real axis.

It is also required that

degQ(z) ≥ degP (z) + 2

Then evaluating the integral on the half-disk in the upper half-plane and letting the radius go to∞, we have∫ ∞

−∞

P (x)

Q(x)
dx = 2πi

∑
Res

[
P (z)

Q(z)
, zj

]
.

Integrals of rational functions with a trigonometric multiplier can also be computed using the residue theorem.

For example, ∫ ∞

−∞

P (x)

Q(x)
cos(ax) dx = πe−a.

Here, we replace cos(ax) with eiz = e−y which is bounded above in magnitude by 1 in the upper half-plane.
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7.3 Integral of Trigonometric Functions

Remark. Integrals with polar coordinates can be converted into a line integral on a disk in the complex plane.

We use the following parameterization

dθ =
dz

iz

for the differential and the exponential forms of sin z and cos z.

cos θ =
eiθ + e−iθ

2
=

z + 1/z

2

sin θ =
eiθ − e−iθ

2i
=

z − 1/z

2i

Therefore, ∫ 2π

0

dθ

a+ cos θ
=

∮
|z|=1

1

a+ 1
2 (z + 1/z)

dz

iz
=

2

i

∮
|z|=1

dz

z2 + 2az + 1

can be computed using the residue theorem.

7.4 Integrands with Branch Points

This section contains no definitions or theorems.

7.5 Fractional Residues

Theorem 7.3 (Fractional Residue Theorem). If z0 is a simple pole of f(z), and Cϵ is an arc of the

circle {|z − z0| = ϵ} of angle α, then

lim
ϵ→0

∫
Cϵ

f(z) dz = αi Res [f(z), z0].

7.6 Principal Values

Definition 7.4. An integral
∫ b

a
f(x) dx is absolutely convergent if the (proper or improper) integral∫ b

a
|f(x)| dx is finite. The integral is absolutely divergent if

∫ b

a
|f(x)| dx = +∞.

Definition 7.5. Suppose that f(x) is continuous for a ≤ x < x0 and for x0 < x ≤ b. We define the

principal value of the integral
∫ b

a
f(x) dx to be

PV

∫ b

a

f(x) dx = lim
ϵ→0

(∫ x0−ϵ

a

+

∫ b

x0+ϵ

)
f(x) dx,

provided that the limit exists. The principal value of the integral coincides with the usual value of the

(proper or improper) integral if f(x) is absolutely integrable.

Definition 7.6. Let u(s) is an integral function on the real line. We define the Hilbert transform by

(Hu)(t) = PV

∫ ∞

−∞

u(s)

s− t
ds, −∞ < t <∞.

If u(s) is extended appropriately to be harmonic in the upper half-plane, then (Hu)(s) is the boundary value

function of its harmonic conjugate.
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7.7 Jordan’s Lemma

Lemma 7.7 (Jordan’s Lemma). If ΓR is the semicircular contour z(θ) = Reiθ, 0 ≤ θ ≤ π, in the upper

half-plane, then ∫
ΓR

|eiz||dz| < π. (7.3)

For the parameterization z(θ) = Reiθ we have |eiz| = eR sin θ and |dz| = Rdθ, so the estimate (7.3) becomes∫ π

0

e−R sin θ dθ <
π

R
.

7.8 Exterior Domains

Definition 7.8. An exterior domain is a domain D in the complex plane that includes all large z, that

is, D includes all z such that |z| ≥ R for some R.

Theorem 7.9. Let D be an exterior domain with piecewise smooth boundary. Suppose that f(z) is analytic

on D∪ ∂D, except for a finite number of isolated singularities z1, . . . , zm in D, and let a−1 be the coefficient

of 1/z in the Laurent expansion f(z) =
∑

akz
k that converges for |z| > R. Then∫

∂D

f(z) dz = −2πia−1 + 2πi

m∑
j=1

Res [f(z), zj ]. (7.4)

Definition 7.10. Suppose now that f(z) is analytic for |z| ≥ R, with Laurent expansion

f(z) =

∞∑
n=−∞

anx
n, |z| ≥ R.

We define the residue of f(z) at ∞ to be

Res [f(z),∞] = −a−1.

The formula (7.4) becomes∫
∂D

f(z) dz = −2π Res [f(z),∞] + 2πi

m∑
j=1

Res [f(z), zj ].

8 The Logarithmic Integral

8.1 The Argument Principle

Definition 8.1. Suppose f(z) is analytic on a domain D. For a curve γ in D such that f(z) ̸= 0 on γ, we

refer to
1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫
γ

d log f(z)

as the logarithmic integral of f(z) along γ. Thus the logarithmic integral measures the change of log f(z)

along the curve γ.

Theorem 8.2. Let D be a bounded domain with piecewise smooth boundary ∂D, and let f(z) be a mero-

morphic function on D that extends to be analytic on ∂D, such that f(z) ̸= 0 on ∂D. Then

1

2πi

∫
∂D

f ′(z)

f(z)
dz = N0 −N∞
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where N0 is the number of zeros of f(z) in D and N∞ is the number of poles of f(z) in D, counting

multiplicities.

Definition 8.3. Evaluating the logarithmic integral yields

1

2πi

∫
γ

d log f(z) =
1

2πi

∫
γ

d log |f(z)|+ 1

2π

∫
γ

d arg(f(z)).

The differential d log |f(z)| is exact. If we parameterize γ by γ(t) = x(t) + iy(t), a ≤ t ≤ b, then∫
γ

d log |f(z)| = log |f(γ(b))| − log |f(γ(a))|

depends solely on γ(a) and γ(b). In particular, the integral is 0 on any closed curve. The differential

d arg f(z) is closed but not exact. Integrating on γ gives us∫
γ

d arg(f(z)) = arg f(γ(b))− arg f(γ(a)). (8.1)

The quantity (8.1) is referred to as the increase in the argument of f(z) along γ. It is defined for any

path γ in D providing there are no zeros on poles on the path. If a bounded domain D has a boundary ∂D

consists of a finite number of piecewise-smooth curves, then we define the increase in the argument of

f(z) around the boundary of D to be the sum of its increase around the closed curves in ∂D.

Theorem 8.4. Let D be a bounded domain with piecewise smooth boundary ∂D, and let f(z) be a mero-

morphic function on D that extends to be analytic on ∂D, such that f(z) ̸= 0 on ∂D. Then the increase in

the argument on f(z) around the boundary of D is 2π times the number of zeros minus the number of poles

of f(z) in D, ∫
∂D

d arg(f(z)) = 2π(N0 −N∞).

8.2 Rouché’s Theorem

Theorem 8.5 (Rouché’s Theorem). Let D be a bounded domain with piecewise smooth boundary ∂D.

Let f(z) and h(z) be analytic on D ∪ ∂D. If |h(z)| < |f(z)| for z ∈ ∂D, then f(z) and f(z) + h(z) have the

same number of zeros in D, counting multiplicities.

8.3 Hurwitz’s Theorem

Theorem 8.6 (Hurwitz’s Theorem). Suppose {fk(z)} is a sequence of analytic functions on a domain D

that converges normally on D to f(z), and suppose that f(z) has a zero of order N at z0. Then there exists

ρ > 0 such that for large k, fk(z) has exactly N zeros in the disk {|z − z0| < ρ} counting multiplicity, and

these zeros converge to z0 as k →∞.

Theorem 8.7. We say that a function is univalent on a domain D if it is analytic and one-to-one on D.

Theorem 8.8. Suppose {fk(z)} is a sequence of univalent functions on a domain D that converges normally

on D to a function f(z). Then either f(z) is univalent or f(z) is constant.

8.4 Open Mapping and Inverse Function Theorems

Definition 8.9. Let f(z) be a meromorphic function on a domain D. We say that f(z) attains the value

w0 m times at z0 if f(z)− w0 has a zero of order m at z0. We make the usual modifications to cover the
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cases z0 = ∞ and w0 = ∞, so that f(z) attains a finite value w0 m times at z0 = ∞ if f(1/z) − w0 has a

zero of order m at z = 0, and f(z) attains the value ∞ m times at z0 if z0 is a pole of f(z) of order m.

Theorem 8.10 (Open Mapping Theorem for Analytic Functions). If f(z) is analytic on a domain

D, and f(z) is not constant, then f(z) maps open sets to open sets, that is f(U) is open for each open subset

of D.

Theorem 8.11 (Inverse Function Theorem). Supoose f(z) is analytic for |z − z0| ≤ ρ and satisfies

f(z0) = w0, f
′(z0) ̸= 0, and f(z) ̸= w0 for 0 < |z − z0| ≤ ρ. Let δ > 0 be chosen such that |f(z) − w0| ≥ δ

for |z − z0| = ρ. Then for each w such that |w − w0| < δ, there is a unique z satisfying |z − z0| < ρ and

f(z) = w. Writing z = f−1(w), we have

f−1(w) =
1

2πi

∫
|ζ−z0|=ρ

ζf ′(ζ)

f(ζ)− w
dζ, |w − w0| < δ.

8.5 Critical Points

Definition 8.12. Let f(z) be a nonconstant analytic function on a domain D. A point z0 is called a critical

point of f(z) if f ′(z0) = 0. The value f(z0) = w0 is called a critical value of f(z). We define the order

of the critical point z0 to be the order of zero of f ′(z) at z0. Since the critical points are the zeros of the

nonconstant analytic function f ′(z), critical points are isolated.

Theorem 8.13. Let f(z) be analytic at z0. Suppose z0 is a critical point of order m−1 for f(z), with critical

value f(z0) = w0. Let ρ > 0 satisfy f(z) ̸= w0 for 0 < |z − z0| ≤ ρ, and let δ > 0 satisfy |f(z)− w0| ≥ δ for

|z − z0| = ρ. Then for each w such that 0 < |w − w0| < δ, the equation f(z) = w has exactly m distinct

solutions z1(w), . . . , zm(w) in the disk {|z − z0| < ρ}. The functions z1(w), . . . , zm(w) can be chosen to

depend analytically on w in the slit disk {|w − w0| < δ} \ (w0 − δ, w0]. They form the m branches of an

analytic function z = z(w) on an m-sheeted Riemann surface over the punctured disk {0 < |w − w0| < δ}.
The zj(w)’s are the solutions of a polynomial equation

zm + am−1(w)z
m−1 + · · ·+ a1(w)z + a0(w) = 0

with coefficients aj(w) that are analytic for |w − w0| < δ.

8.6 Winding Numbers

Definition 8.14. Let γ(t), a ≤ t ≤ b be a closed path in D. We define the trace of γ to be the image

Γ = γ([a, b]) of γ. For z0 ̸= Γ, we define the winding number W (γ, z0) of γ around z0 to be the increase

in the argument of z − z0 around γ, normalized by dividing by 2π. If γ is piecewise smooth, the winding

number is the integer

W (γ, z0) =
1

2πi

∫
γ

dz

z − z0
=

1

2π

∫
γ

d arg(z − z0), z0 ̸= Γ.

Theorem 8.15. Let γ(t), a ≤ t ≤ b, be a closed path in the complex plane, and let Γ = γ([a, b]) be its trace.

The winding number W (γ, ζ) is constant on each connected component of C \ Γ. Further, W (γ, ζ) = 0 for

all ζ in the unbounded component of C \ Γ.

Theorem 8.16. If f(z) is analytic on a domain D, then
∫
γ
f(z) dz = 0 for each closed path γ in D such

that W (γ, ζ) = 0 for all ζ ∈ C \D.
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Theorem 8.17. Let f(z) be analytic on a domain D, and let γ be a closed path in D with trace Γ = γ([a, b]).

If W (γ, ζ) = 0 for all ζ ∈ C \D, then

1

2πi

∫
γ

f(z)

z − z0
dz = W (γ, z0)f(z0) z0 ∈ D \ Γ.

8.7 The Jump Theorem for Cauchy Integrals

Definition 8.18. Suppose γ is a piecewise smooth curve with trace Γ, and let f(z) be a continuous function

on Γ. We define the Cauchy integral of f(z) along γ to be the function F (ζ) defined off Γ by

F (ζ) =
1

2πi

∫
γ

f(z)

z − ζ
dz, ζ ∈ C \ Γ. (8.2)

We have seen that the Cauchy integral F (ζ) is analytic on C \ Γ, and F (ζ) vanishes at ∞.

Theorem 8.19 (Jump Theorem for Cauchy Integrals). Suppose that Γ is a smooth curve that passes

through z0, and f(z) is a continuous function on Γ that is analytic at z0. Let U be a small disk containing

z0 such that f(z) is analytic on U and such that Γ divides U into the two components. We set U+ to be the

open domain on the right side of γ as we traverse the curve in the positive direction, and U− to be the open

domain on the left side. Then there are analytic functions F+(ζ) and F−(ζ) on U satisfying

F−(ζ)− F+(ζ) = f(ζ), ζ ∈ U,

and such that the Cauchy integral F (ζ) of f(z), defined by (8.2), satisfies

F (ζ) =

{
F+(ζ), ζ ∈ U+,

F−(ζ), ζ ∈ U−.

Thus as ζ crosses Γ from right to left (from U+ to U−) the values of the Cauchy integral F (ζ) jump by f(ζ),

F−(ζ) = F+(ζ) + f(ζ), ζ ∈ U.

Theorem 8.20 (Jump Theorem for Winding Numbers). Let γ be a closed path with trace Γ, and

let z0 = γ(t0) ∈ Γ. Suppose that γ(t) is continuously differentiable for t near t0, with γ′(t0) ̸= 0. Let U

be a small disk centered at z0 that is divided into two components U± by a segment γ0 on γ as above, and

suppose that γ \ γ0 does not enter U . Then as ζ ∈ U crosses Γ from right to left (from U+ to U−), the

winding number W (γ, ζ) jumps by +1,

W (γ, ζ−) = W (γ, ζ+) + 1, ζ− ∈ U−, ζ+ ∈ U+.

Theorem 8.21 (Jordan Curve Theorem for Smooth Curves). Let γ be a piecewise smooth simple

closed curve in the complex plane C, and let Γ = γ([a, b]) be its trace. Then Γ divides the complex plane into

two connected components, one bounded and the other unbounded, each of which has Γ as its boundary.

Further, W (γ, ζ) = 0 if ζ is in the unbounded component of C \ Γ, and W (γ, ζ) = ±1 if ζ is in the bounded

component of C \ Γ, wehre the choice of sign depends on the orientation of γ.

8.8 Simply Connected Domains

Definition 8.22. Let γ(t), a ≤ t ≤ b, be a closed path in a domain D. We say that γ is deformable to a

point if there are closed paths γs(t), a ≤ t ≤ b, 0 ≤ s ≤ 1, in D such that γs(t) depends continuously on

both s and t, γ0 = γ, and γ1(t) = z1 is the constant path at some point z1 ∈ D. The domain D is simply

connected if every closed path in D can be deformed to a point.
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Lemma 8.23. Let γ(t), 0 ≤ t ≤ 1, be a closed path in D, with z0 = γ(0) = γ(1). Suppose that γ can be

deformed continuously to a point in D. Then there is a continuous family of closed paths γs, 0 ≤ s ≤ 1,

such that γ0 = γ, γ1 is the constant path at z0, and each path γs starts and ends at z0.

Definition 8.24. Let X be a subset of the extended complex plane C∗. We say that X is connected if

every continuous integer-valued function on X is constant.

Theorem 8.25. The following properties are equivalent, for a domain D in the complex plane:

(a) D is simply connected,

(b) every closed differential on D is exact,

(c) for each z0 ∈ C \D, there is an analytic branch of log(z − z0) defined on D,

(d) each closed curve γ in D has winding number W (γ, z0) = 0 about all points z0 ∈ C \D,

(e) the complement of D in the extended complex plane C∗ is connected.

9 The Schwarz Lemma and Hyperbolic Geometry

9.1 The Schwarz Lemma

Theorem 9.1 (Schwarz Lemma). Let f(z) be analytic for |z| < 1. Suppose |f(z)| ≤ 1 for all |z| < 1, and

f(0) = 0. Then

|f(z)| ≤ |z|, |z| < 1. (9.1)

Further, if equality holds in (9.1) at some point z0 ̸= 0, then f(z) = λz for some constant λ of unit modulus.

Corollary 9.2. An analagous estimate holds in any disk. If f(z) is analytic for |z − z0| < R, f(z) ≤ M ,

and f(z0) = 0, then

|f(z)| ≤ M

R
|z − z0|, |z − z0| < R,

Theorem 9.3. Let f(z) be analytic for |z| < 1. If |f(z)| ≤ 1 for |z| < 1, and f(0) = 0, then

|f ′(0)| ≤ 1,

with equality if and only if f(z) = λz for some constant λ with |λ| = 1.

9.2 Conformal Self-Maps of the Unit Disk

Definition 9.4. We denote by D the open unit disk in the complex plane, D = {|z| < 1}. A conformal

self-map of the unit disk is an analytic function from D to itself that is one-to-one and onto.

Remark. The composition of two conformal self-maps is again a conformal self-map, and the inverse of a

conformal self-map is a conformal self-map. The conformal self-maps from a group with composition as the

group operation; the group identity is the identity map g(z) = z.

Lemma 9.5. If g(z) is a conformal self-map of the unit disk D such that g(0) = 0, then g(z) is a rotation,

that is, g(z) = eiφz for some fixed φ, 0 ≤ φ ≤ 2π.

Theorem 9.6. The conformal self-maps of the open unit disk D are precisely the fractional linear transfor-

mations of the form

f(z) = eiφ
z − a

1− az
, |z| < 1,
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where a is complex, |a| < 1, and 0 ≤ φ ≤ 2π.

Theorem 9.7 (Pick’s Lemma). If f(z) is analytic and satisfies |f(z)| < 1 for |z| < 1, then

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2
, |z| < 1. (9.2)

If f(z) is a conformal self-map of D, then equality holds in (9.2); otherwise, there is a strict inequality for

all |z| < 1.

9.3 Hyperbolic Geometry

Definition 9.8. Suppose w = f(z) is a conformal self-map of the open unit disk D. From Pick’s lemma we

then have equality in (9.2), ∣∣∣∣dwdz
∣∣∣∣ = 1− |w|2

1− |z|2
.

In the differental form this becomes
|dw|

1− |w|2
=

|dz|
1− |z|2

,

which means that if γ is any smooth curve in D, and w = f(z) is a conformal self-map of D, then∫
f◦γ

|dw|
1− |w|2

=

∫
γ

|dz|
1− |z|2

. (9.3)

Thus to obatin a length function that is invariant under conformal self-maps of D, we define the length of

γ in the hyperbolic metric by

hyperbolic length of γ = 2

∫
γ

|dz|
1− |z|2

. (9.4)

Remark. The factor 2 is often ommited. (It adjusts the metric so that its curvature is -1.) The identity (9.3)

shows that f ◦ γ has the same hyperbolic length as γ for any conformal self-map f(z) of D. Thus hyperbolic
lengths are invariant under conformal self-maps of D.

Definition 9.9. We define the hyperbolic distance ρ(z0, z1) from z0 to z1 to be the infimum of the

hyperbolic lengths of all piecewise smooth curves in D from z0 to z1. Since conformal self-maps of D preserve

the hyperbolic lengths of curves, they also preserve hyperbolic distances; that is, for any conformal self-map

w = f(z) on D,
ρ(f(z0), f(z1)) = ρ(z0, z1), z0, z1 ∈ D.

Theorem 9.10. For any two distinct points z0, z1 in the open unit disk D, there is unique shortest curve

in D from z0 to z1 in the hyperbolic metric, namely, the arc of the circle passing through z0 and z1 that is

orthogonal to the unit circle.

Definition 9.11. The paths of shortest hyperbolic length between points are called hyperbolic geodesics.

The hyperbolic geodesics play the role that straight lines play in the Euclidean geometry of the plane. They

satisfy all the axioms of Euclidean geometry except the parallel axiom.

Theorem 9.12. Every analytic function w = f(z) from the open unit disk D to itself is a contraction

mapping with respect to the hyperbolic metric ρ,

ρ(f(z0), f(z1)) ≤ ρ(z0, z1), z0, z1 ∈ D.

Further, there is a strict inequality for all points z0, z1 ∈ D, z0 ̸= z1, unless f(z) is equality for all z0, z1 ∈ D.
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Definition 9.13. A geodesic triangle is an area bounded by three hyperbolic geodesics. Since the hy-

perbolic geodesics and the angles between then are preserved by conformal self-maps of D, we can map any

geodesic triangle to a triangle with vertex at 0 and with the same angles between sides.

Definition 9.14. Recall that the chordal metric on C by the Euclidean metric of the sphere via the stero-

graphic projection is given explicitly by

chordal distnace from z to w =
2|z − w|√

1 + |z|2
√
1 + |w|2

.

The infinitesimal form of this metric is 2|dz|/(1 + |z|2). If γ is a path in C∗, its length in the spherical

metric is

spherical length of γ = 2

∫
γ

|dz|
1 + |z|2

= 2

∫
|γ′(t)|

1 + |γ(t)|2
dt.

This is the length of the corresponding path on the unit sphere in R3. The distance from z1 to z2 in the

spherical metric is defined to be the infimum of the spherical lengths of the paths joining z1 to z2.

Remark. Since the cordal metric is invariant under rotations of the sphere, so is the spherical metric, and

consequently, the lengths of paths and the distances between points in the spherical metric and invariant

under rotations. It is not difficult to show that the geodesics in the spherical metric correspond to great

circles on the sphere, and the sum of the angles of a geodesic triangle is strictly greater than π.

Remark. We summarize the relationship between complex analyis and Euclidean, spherical, and hyperbolic

geometries.

Geometry Euclidean Spherical Hyperbolic

Infinitesimal length |dz| 2|dz|
1 + |z|2

2|dz|
1− |z|2

Oriented isometries eiφz + b rotations conformal self-maps

Curvature 0 +1 −1

Geodesics lines great circles circles ⊥ unit circle

Angles of triangle π > π < π

Disk circumference 2πρ 2πρ− πρ3

3
+O(ρ5) 2πρ+

πρ3

3
+O(ρ5)

10 Harmonic Functions and the Reflection Principle

10.1 The Poisson Integral Formula

Definition 10.1. We define the Poisson kernel function to be

Pr(θ) =

∞∑
k=−∞

r|k|eikθ.

For each fixed ρ < 1, this series converges uniformly for r ≤ ρ and −π ≤ θ ≤ π, by the Weierstrass M -test,

since then
∣∣r|k|eikθ∣∣ ≤ ρ|k|.
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Remark. We see that the trigonometric polynomial h(eiθ) =
∑N

k=−N ake
ikθ has the (unique) harmonic

extension

h̃
(
reiθ

)
=

N∑
k=−N

akr
|k|eikθ.

We capture the coefficent am by multiplying h
(
eiθ
)
by e−imθ and integrating. The orthogonality relations

for complex exponentials (Section 6.6) yield

am =

∫ π

−π

h
(
eiθ
)
e−imθ dθ

2π
.

Substituting this expression into the formula for h̃
(
reiθ

)
, we obtain

h̃
(
reiθ

)
=

∞∑
k=−∞

(∫ π

−π

h
(
eiθ
)
e−ikφ dφ

2π

)
r|k|eikθ =

∫ π

−π

h
(
eiθ
) [ ∞∑

k=−∞

r|k|e−ikφeikθ

]
dφ

2π
. (10.1)

In terms of the Poisson kernel, the formula for the harmonic extension h̃
(
reiθ

)
becomes

h̃
(
reiθ

)
=

∫ π

−π

h
(
eiθ
)
Pr(θ − φ)

dφ

2π
, reiθ ∈ D. (10.2)

If we make a change of variable φ → θ − φ and use the 2π-periodicity of Pr(θ), we obtain an alternative

form of (10.2),

h̃
(
reiθ

)
=

∫ π

−π

h
(
ei(θ−φ)

)
Pr(φ)

dφ

2π
, reiθ ∈ D. (10.3)

Lemma 10.2. Let Pr(θ) be the Poisson kernel function defined by (10.1). Then the following are true:

(a) Pr(θ) =
1− |z|2

|1− z|2
=

1− r2

1 + r2 − 2r cos θ
for z = reiθ ∈ D;

(b) Pr(θ) = 1 + 2Re

(
z

1− z

)
= Re

(
1 + z

1− z

)
for z = reiθ ∈ D;

(c)

∫ π

−π

Pr(θ)
dθ

2π
= 1;

(d) Pr(θ) > 0, −π ≤ θ ≤ π;

(e) Pr(−θ) = Pr(θ), −π ≤ θ ≤ π;

(f) Pr(θ) is increasing for −π ≤ θ ≤ 0, and decreasing for 0 ≤ θ ≤ π;

(g) for fixed δ > 0, max{Pr(θ) : δ ≤ |θ| ≤ π} → 0 as r → 1.

Remark. From Lemma 10.2, (10.2) becomes

h̃
(
reiθ

)
=

∫ π

−π

h
(
eiφ
)
Re

(
1 + rei(θ−φ)

1− rei(θ−φ)

)
dφ

2π
.

Thus

h̃
(
reiθ

)
=

∫ π

−π

h
(
eiφ
)
Re

(
eiφ + z

eiφ − z

)
dφ

2π
z ∈ D. (10.4)

If we substitute for h
(
reiφ

)
a real-valued trigonometric polynomial u

(
eiφ
)
in this formula, we may take real

parts after integrating, and we obtain

ũ(z) = Re

∫ π

−π

u
(
eiφ
) eiφ + z

eiφ − z

dφ

2π
, z ∈ D. (10.5)

The integral depends analytically on the parameter z. Thus (10.5) expresses ũ(z) as the real part of an

explicit analytic function.
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Definition 10.3. Consider an arbitrary continuous complex-valued function h
(
eiθ
)
on the unit circle. We

define the Poisson integral (̃h)(z) of h
(
eiθ
)
to be the function on the open unit disk D given by

h̃(z) =

∫ π

−π

h
(
eiθ
)
Pr(θ − φ)

dφ

2π
, z = reiθ ∈ D. (10.6)

This is just (10.2) and it can be written as (10.3). Formula (10.4) still holds, and for real-valued continuous

functions u
(
eiφ
)
, formula (10.5) holds.

Remark. The correspondence h→ h̃ is linear, that is, the Poisson integral of c1h1+c2h2 is c1h̃1+c2h̃2. Also,

observe that the maximum principle holds, in the sense that if |h
(
eiθ
)
| ≤ M for all θ, then |h̃(z)| ≤ M for

all z ∈ D.

Theorem 10.4. Let h
(
eiθ
)
be a continuous function on the unit circle. Then the Poisson integral h̃(z)

defined by (10.6) is a harmonic function on the open unit disk that has boundary values h
(
eiθ
)
, that is, h̃(z)

tends to h(ζ) as z ∈ D tends to ζ ∈ ∂D.

10.2 Characterization of Harmonic Functions

Definition 10.5. A Dirichlet problem for a domain U with boundary ∂U is to extend a given function

f(ζ) on ∂U to a harmonic function f̃(z) on U , so that the harmonic extension f̃(z) has boundary values

f(ζ).

Theorem 10.6. Let h(z) be a continuous function on a domain D. Then h(z) is harmonic on D if and only

if h(z) has the mean value property on D.

10.3 The Schwarz Reflection Principle
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