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1 Floating Point and Roundoff Error

1.1 Number Representation

Definition 1.1. Let β > 1 be an integer. We call β the base of a number system. Let ak, bk be integers

such that 0 ≤ ak, bk < β. Then any real number x can be represented by

x = (an an−1 · · · a1 a0 . b1 b2 b3 · · · )β .

We call the dot between a0 and b1 the radix point. Alternatively, we can represent x by two summations:

x = akβ
k + ak−1β

k−1 + · · ·+ a1β + a0 + b1β
−1 + b2β

−2 + · · · =
n∑
k=0

akβ
k +

∞∑
k=1

bkβ
−k

We call the first sum the integral part of x and denote it by xI , and the second sum the fractional part of x

and denote it by xF . We call for formulas above the expansion of x.

Definition 1.2. An expansion of some real number x is said to terminate if there exists some K ≥ 0 such

that bk = 0 for all k ≥ K.

Theorem 1.3. A real number x has a terminating expansion in base β if and only if x is rational and when

x is expressed in simplest form, the only prime factors of the denominator of x are factors of β.

Theorem 1.4. Let x be a real number. If x does not have a terminating expansion in base β, then the

expansion of x in base β is unique. If x 6= 0, has a terminating expansion in base β, then it has exactly on

terminating expansion (ending in zeros) and exactly one nonterminating expansion (ending in (β − 1)’s).

Remark.

(i) The expansions of negative numbers are just prefixed by a minus sign, e.g. −1/8 = −(0.12500 · · · )10.

(ii) There are algorithms for converting expansions from one case to another.

1.2 Normalized Scientific Notation in Base β

Lemma 1.5. Let β > 1 be an integer. For any real number x > 0, there is a unique integer c and a unique

number r ∈ [1/β, 1) so that x = rβc. The number r can be expressed as an expansion in base β,

r = (. d1 d2 d3 · · · )β

with d1 6= 0.

Theorem 1.6. Let x 6= 0 be any real number. Then x has an expansion in base β,

x = ± (. d1 d2 d3 · · · )β β
c

with d1 6= 0.

Definition 1.7. The representation of x in Theorem 1.6 is called the normalized scientific notation for x in

base β. It is unique, except for real numbers x with terminating expansions (which have two expansions);

we always choose the terminating expansion.
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1.3 Floating Point Arithmetic

Definition 1.8. An m-digit floating-point number in base β is denoted by

x = ± (. d1 d2 · · · dm)β β
c

where (. d1 d2 · · · dm)β is called the mantissa and c is called the exponent. If d1 6= 0 (or x = 0), called a

normalized floating-point number.

Remark. In computers, the base is usually β = 2 and mantissa lengths usually comes in two sizes: single

(23) and double (52). Additionally, the exponent c has a limited range −M ≤ c ≤M .

Definition 1.9. Any real number can be represented approximately by floating-point numbers. For every

real number x, the floating-point value fl(x) is the approximate value of x. Generally, fl is only well defined

for some domain {x : βµ−1 ≤ |x| < βM}. Otherwise, underflow or overflow occurs.

Definition 1.10. The function fl is commonly defined in two different ways:

(i) Rounding - fl(x) is the normalized floating-point number closest fo x. In case of a tie, round to an even

digit (symmetric rounding about 0).

(ii) Truncating - fl(x) is the nearest normalized floating-point number between x and 0.

Remark. A more precise definition of the fl functions exists for even β. Let x = ±rβc be a real number in

normalized scientific notation where

r = (0 . d1 d2 d3 · · · )

Then fl(x) for an m-digit floating-point representation with a maximum M exponent is

fl(x) =



0, x = 0

underflow, 0 < |x| < βµ−1 (possibly extended to βµ−m ≤ |x| < βµ−1)

overflow, |x| ≥ βM

±(. d1 d2 · · · dm)ββ
c, truncating

±(. d1 d2 · · · dm)ββ
c, rounding, ( dm+1 dm+2 · · · ) < 1/2

± [(. d1 d2 · · · dm)β + (.00 · · · 1)β ]βc, rounding, ( dm+1 dm+2 · · · ) > 1/2

± [(. d1 d2 · · · dm)β + (.00 · · · 1)β ]βc, rounding, ( dm+1 dm+2 · · · ) = 1/2, dm is odd

± [(. d1 d2 · · · dm)β − (.00 · · · 1)β ]βc, rounding, ( dm+1 dm+2 · · · ) = 1/2, dm is even

1.4 Absolute and Relative Error

Definition 1.11. Suppose that x′ is an approximation to a real number x. Then the absolute error in x′ is

x− x′ and the relative error in x′ (if x 6= 0) is (x− x′)/x.

Definition 1.12. The roundoff error is the error in fl(x) as an approximation to x. Usually it is absolute

error x− fl(x).

Theorem 1.13. Suppose βµ−1 ≤ |x| < βM . Define δ = δ(x) = (fl(x)− x)/x to be the relative error of fl(x).

(i) For rounding, |δ| ≤ β1−m/2.

(ii) For truncating, −β1−m < δ ≤ 0.

Definition 1.14. The maximum possible value for |δ| when there is no underflow or overflow is called the

unit roundoff, denoted by u. In rounding, u = β1−m/2. In truncating, u = β1−m.
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Remark. The value δ = (fl(x) − x)/x can be rearranged to form fl(x) = x(1 + δ). This is useful in error

analysis. If we define ε(x) = (fl(x)−x)/fl(x), then |ε| < β1−m/2 for rounding and |ε| < β1−m for truncating.

Here, fl(x) = x/(1 + ε).

Definition 1.15. The machine epsilon is defined to be ε = sup{y > 0 : fl(1 + y) = 1}.

Remark. The machine epsilon can also be defined to be ε = inf{y > 0 : fl(1 + y) > 1}. The machine epsilon

is exactly the same as the unit roundoff.

1.5 Arithmetic Operations with Floating-Point Numbers

Definition 1.16. With β,m fixed, the set of floating-point numbers is not closed under the usual operations

+, −, ×, and ÷. Machines are usually constructed so that

x ◦∗ y = fl(x ◦ y).

where ◦ is +, −, ×, or ÷, and ◦∗ is the corresponding floating-point operation. Unless underflow or overflow

occurs

x ◦∗ y = (x ◦ y)(1 + δ)

for some δ where δ ≤ u where x, y are floating-point numbers. Alternatively,

x ◦∗ y = (x ◦ y)/(1 + ε)

for some ε where |ε| ≤ µ.

Theorem 1.17. Suppose 0 < u < 1 and |δj | ≤ u for j = 1, . . . , r. Then there exists a δ with |δ| ≤ u such

that

(1 + δ1) · · · (1 + δr) = (1 + δ)r

Corollary 1.18. For the theorem above, if ru� 1, then (1 + δ)r ≈ 1 + rδ.

Remark. For two real number p, q, the operation fl(p)× fl(q) is

fl(p)× fl(q) = pq(1 + δ1)(1 + δ2)(1 + δ3) = pq(1 + δ)3.

This kind of analysis is called backward error analysis.

Definition 1.19. Suppose x is written in normalized scientific notation in base β,

x = (. d1 d2 d3 · · · )ββc

where d1 6= 0. The digit dj is called the j-th significant digit of x; dj is the coefficient of βc−j .

Definition 1.20. Suppose x′ is an approximation to x. If |x− x′| ≤ βc−r/2, we say x′ approximates x to r

significant digits. Very approximately, the number of significant digits in x′ is − logβ |(x− x′)/x|.

Theorem 1.21. Very approximately, if x and y have t significant digits, have the same sign, and agree to s

significant digits, then the computed value of x− y will have only t− s significant digits.

Theorem 1.22. Let x1, x2, . . . , xn+1 be positive normalized floating-point numbers, + be true addition,⊕
be machine addition, u be the unit roundoff with 0 < u < 1, and assume no overflow when we add

x1, . . . , xn+1. Then there are numbers δ1, . . . , δn with |δj | ≤ u for which
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(i) x1
⊕
x2 = (x1 + x2)(1 + δ1)

(ii) (x1
⊕
x2)
⊕
x3 = (x1 + x2)(1 + δ1)(1 + δ2) + x3(1 + δ2)

(iii) x1
⊕
x2
⊕
· · ·
⊕
xn+1 = (x1 + x2)(1 + δ1) · · · (1 + δn) + x3(1 + δ2) · · · (1 + δn) + · · ·+ xn+1(1 + δn)

Remark. Consider solving ax2 + bx+ c = 0 by the quadratic formula when ac 6= 0, b 6= 0, and b2 − 4ac > 0.

The two solutions can be each written in two ways:

−b+
√
b2 − 4ac

2a
=

(
−b+

√
b2 − 4ac

2a

)(
−b−

√
b2 − 4ac

−b−
√
b2 − 4ac

)
=

4ac

2a(−b−
√
b2 − 4ac)

=
2c

−b−
√
b2 − 4ac

,

and similarly,
−b−

√
b2 − 4ac

2a
=

2c

−b+
√
b2 − 4ac

.

When b > 0, −b+
√
b2 − 4ac could have cancellation, and when b < 0, −b−

√
b2 − 4ac could have cancellation.

Thus a better implementation of the quadratic formula is when b > 0, the two roots are 2c/(−b−
√
b2 − 4ac)

and (−b−
√
b2 − 4ac)/2a, and when b < 0, the two roots are (−b+

√
b2 − 4ac)/2a and 2c/(−b+

√
b2 − 4ac).

1.6 Converting Between Bases

Theorem 1.23. Suppose N = (an an−1 · · · a0)α is represented in base α. The expansion of N in base β can

be found using two different methods:

(i) Express α, a0, a1, · · · , an in base β. Then N is

N = (((an · α+ an−1) · α+ · · · ) · α+ a1) · · ·α+ a0

where each operation is in base β arithmetic.

(ii) Suppose N = (cm cm−1 · · · c0)β . Then

N = c0 + β · (c1 + β · (c2 + · · · )).

Theorem 1.24. Suppose x = (. b1 b2 · · · bm)α is represented in base α. The expansion of x in base β can be

found using two different methods:

(i) Express α, b1, b2 · · · , bm in base β. Then N is

N = (((bm/α+ bm−1)/α+ · · ·+ b2)/α+ b1)/α

where each operation is in base β arithmetic.

(ii) Suppose N = (cm cm−1 · · · c0)β . The expansion of x can be found by successively solving for each

coefficient in base β. Let x = (. c1 c2 · · · )β for unknown coefficients c1, c2, . . ..

βx = (c1 . c2 c3 · · · )β , so c1 = (βx)I

β(βx)F = (c2 . c3 c4 · · · )β , so c2 = (β(βx)F )I

...
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2 Solutions of Linear Systems

2.1 Solutions of Linear Systems using Elimination

Definition 2.1. Consider the matrix equation Ax = b where A is an upper triangular matrix whose diagonal

entires are all non-zero, that is,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a22x2 + · · ·+ a2nxn = b2

...

annxn = bn

To solve for x, begin with xn: xn = bn/ann. Then solve for xn−1: xn−1 = (bn−1 − an−1,nxn)/an−1,n−1. In

general,

xk =
bk −

∑n
j=k+1 akjxj

akk
.

This method of solving is called back subtitution.

Theorem 2.2. An upper triangular matrix A is invertible if and only if all diagonal entries are non-zero.

Definition 2.3. For any matrix equation Ax = b where A is a square matrix, the method of solving for x

by transforming the equation into an equivalent equation where the matrix is an upper triangular matrix is

called Gaussian elimination. This transformation requires finding a sequence of equivalent linear systems

A(k)x = b(k), 0 ≤ k ≤ n− 1

where A(0) = A,b(0) = b and A(n−1) is an upper triangular matrix. The i-th equation and (i+1)-th equation

is separated by a single row operation.

Remark. Fix k > 1 (the case k − 1 = 0 is trivial). If a
(k−1)
kk 6= 0, add a multiple −a(k−1)ik /ak−1kk of k-th row to

the i-th row for i = k + 1, . . . , n. Then akik = 0 for i = k + 1, . . . , n.

Remark. The value mik = a
(k−1)
ik /a

(k−1)
kk gets stored in the ik-position (if no pivoting).

Definition 2.4. Assuming no pivoting is necessary, Gaussian elimination reduces to

An−1 = Mn−1 · · ·M1A
(0).

where mik = a
(k−1)
ik /a

(k−1)
kk and

Mk =



1 0

1

1

−mk+1,k 1
...

. . .

0 −mn,k 0 1


.

Let U = A(n−1). U is upper triangular with non-zero diagonal elements. Then

A = M−11 M−12 · · ·M−1n−1U.
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Now,

M−1k =



1 0

1

1

mk+1,k 1
...

. . .

0 mn,k 0 1


.

Let L = M−11 M−12 · · ·M−1n−1. Then

L =


1

m21 1

m31 m32 1
...

...
. . .

mn1 mn2 · · · · · · 1

 .

and A = LU . The product LU the LU factorization of A. The matrix L is a unit lower-triangular matrix.

Remark. Let y be the solution of Ly = b. Since L = M−11 M−12 · · ·M−1n−1,

y = Mn−1 · · ·M1b.

Solving for y is equivalent to performing elimination steps on b. Then we only need to solve Ux = y to

obtain x. Since x is upper-triangular we only need to perform back subtitution.

Consider solving Ax = b for an n× n matrix using Gaussian elimination.

Step Multiplies (Scaling) Multiplies (Elimination) Additions (Eliminations)

A(0) → A(1) n− 1 (n− 1)2 (n− 1)2

A(1) → A(2) n− 2 (n− 2)2 (n− 2)2

...
...

...
...

A(n−3) → A(n−2) 2 4 4

A(n−2) → A(n−1) 1 1 1

The total number of multiplication operations is

n−1∑
j=1

j +

n−1∑
j=1

j2 =
n(n− 1)

2
+
n(n− 1)(2n− 1)

6
≈ 1

3
n3

while the total number of additions is

n−1∑
j=1

j2 =
n(n− 1)(2n− 1)

6
≈ 1

3
n3.

Thus the total number of operations is 2n3/3.

Consider instead using the LU-factorization of A. For the forward elimination step (Ly = b),

Solving Multiplies Additions

y2 1 1

y3 2 2
...

...
...

yn−1 n− 2 n− 2

yn n− 1 n− 1
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the total number of operations is

n−1∑
j=1

j +

n−1∑
j=1

j =
n(n− 1)

2
+
n(n− 1)

2
≈ n2.

For the back substitution step,

Solving Multiplies Additions

xn 1 0

xn−1 2 1
...

...
...

x2 n− 1 n− 2

x1 n n− 1

the total number of operations is

n∑
j=1

j +
n−1∑
j=0

j =
n(n+ 1)

2
+
n(n− 1)

2
≈ n2.

Therefore, the LU-factorization method requires 2n2 operations.

2.2 Interchanging

Theorem 2.5. Let U be an equivalent, upper-triangular form of A, that is,

U = (Mn−1Pn−1) · · · (M1P1)A,

where Pk is either the identity matrix if no interchanging occurs in the k-th step or Pk just interchanges row

k with row I for some I > k.

Theorem 2.6. Suppose k > l and Pk interchanges rows k and I where I > k. Then PkMl = M̃lPk where

M̃lP is the same as Ml except hte multiplies mkl and mIl have been interchanged.

Pk =


1

0 1

1 0

1

 PkMl =


1

1

mIl 0 1

mkl 1 0

1


Definition 2.7. Let the matrix M̂l be the same as Ml, except all the multiplies in the i-th columns have been

interchanged by the Pk’s for k > l. Then, U = (M̂n−1 · · · M̂1)(Pn−1 · · ·P1)A = L−1P>A. Then, A = PLU .

This is called the PLU factorization of A. Note that P>A = LU , so it also encodes the LU factorization of

(Pn−1 · · ·P1)A which is just A wiht its rows permuted.

2.3 Pivoting

Definition 2.8. In elimination, a pivotal equation is the equation used to elimination an unknown from the

other equations. At the start of the k-th elimination step, a pivotal equation is the equation with a non-zero

coefficient for xk in the k-th, k + 1-th, . . ., n-th equations.

Theorem 2.9. A is invertible if and only if there is at least one pivotal equation at every elimination step.
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Remark. Pivoting can be viewed as multiplying A by a permutation matrix P>, and then finding the LU-

factorization of P>A. Then, A = PLU .

Theorem 2.10. Every invertible matrix A can be written as a product PLU where P is a permutation

matrix, L is a unit lower-triangular matrix and U is an (invertible) upper triangular matrix.

Theorem 2.11. An invertible matrix A has an LU-factorization if and only if each of the upper left hand

submatrices

Ak =


a11 . . . a1k
...

. . .
...

ak1 . . . akk


for k = 1, . . . , n are invertible.

Remark. In practice, not every pivot equation is good for numerical calculations

(i) Do not choose near-zero pivots.

(ii) Cannot just use absolute comparison of a
(k−1)
ik .

(iii) The best pivot maximizes the ratio of the size of pivot entry to the size of the row.

Remark. Suppose we are on the k-th step of Gaussian Elimination (where 1 ≤ k ≤ n − 1). The current

matrix looks like

A(k−1) =



a
(k−1)
11 · · · a

(k−1)
1n

. . .

a
(k−1)
kk

...
...

. . .

a
(k−1)
nk · · · a

(k−1)
nn .


Which entries a

(k−1)
kk , · · · , a(k−1)nk should we use as the k-th pivot element?

Definition 2.12. The technique of simple pivoting involves choosing the pivot row with the smallest I ≥ k
for which A

(k−1)
Ik 6= 0, and interchanging the k-th row and the I-th row.

Definition 2.13. The technique of partial pivoting involves choosing the pivot row with the entry
∣∣∣a(k−1)Ik

∣∣∣
that is the largest of

∣∣∣a(k−1)kk

∣∣∣ , ∣∣∣a(k−1)k+1,k

∣∣∣ , · · · , ∣∣∣a(k−1)nk

∣∣∣, and interchanging the k-th row and the I-th row.

Definition 2.14. The technique of scaled partial pivoting involves computing scale factors for each row:

di = max
1≤j≤n

|aij | for i = 1, . . . , n

before elimination procedure begins and interchanging them when rows are interchanged. At the k-th step,

the pivot row for which a
(k−1)
Ik /dI is the maximized for all I ≥ k, is chosen, and the k-th and I-th row are

interchanged. Alternatively, the scale factors can be recomputed at every step.

Definition 2.15. In total pivoting, the columns are also interchanged. At the k-th step, choose I ≥ k and

J ≥ k for which |a(k−1)IJ | is the maximum of |aij | for i = k, . . . , n and j = k, . . . , n. Interchange the k-th row

and the I-th row and interchange the k-th column and the J-th column.

Lemma 2.16. The operation counts of each pivoting strategy are as follows:
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(i) partial pivoting:
∑(n−1)
k=1 (n− k) ≈ n2/2,

(ii) scaled pivoting (without updating scale factors): n(n− 1) +
∑(n−1)
k=1 [(n− k + 1) + (n− k)] ≈ 2n2,

(iii) scaled pivoting (updating scale factors):
∑(n−1)
k=1 [(n− k + 1)(n− k) + (n− k + 1) + (n− k)] ≈ n3/3,

(iv) total pivoting:
∑n−1
k=1

[
(n− k + 1)2 − 1

]
≈ n3/3.

2.4 Vector Norms on Rn and Cn

Definition 2.17. A norm on a vector space is a function that maps a vector, x ∈ V, to a number and is

denoted by ||x||. A norm must satisfy the following properties for all x,y ∈ Fn and α ∈ F where F is R or

C:

(i) ||x|| ≥ 0; ||x|| = 0 if and only if x = 0,

(ii) ||αx|| = |α| · ||x||,
(iii) ||x + y|| ≤ ||x||+ ||y|| (triangle inequality).

Remark. Common examples of vector norms include:

(i) ||x||1 =
∑

1≤j≤n |xj |,

(ii) ||x||2 =
(∑n

j=1 |aj |2
)1/2

,

(iii) ||x||∞ = max1≤j≤n |aj |.

Definition 2.18. The set of n×n matrices is itself a vector space. A norm on this vector space satisfies for

matrices A,B ∈ Fn×n and α ∈ F where F is R or C:

(i) ||A|| ≥ 0 and ||A|| = 0 if and only if A is the 0 matrix,

(ii) ||αA|| = |α| · ||A||,
(iii) ||A+B|| ≤ ||A||+ ||B||.

We call the norm a matrix norm if in addition we have

||AB|| ≤ ||A|| · ||B||.

Definition 2.19. Given a vector norm on Rn (or Cn), the operator norm induced by vector norm, or just

operator norm, on n× n matrices is

||A|| = sup
x6=0

||Ax||
||x||

.

Informally, this norm gives the maximum stretch factor when x is mapped through A. For p = 1, 2,∞, we

call the operator norm induced by || · ||p also ||A||p.

Theorem 2.20. For p = 1 and p =∞, there are explicit expressions for ||A||1 and ||A∞||.

||A||1 = max
1≤j≤n

n∑
j=1

|aij | ||A||∞ = max
1≤i≤n

n∑
j=1

|aij |

Definition 2.21. Let x and y be vectors in Rn where x = (x1, x2, . . . , xn)> and y = (y1, y2, . . . , yn)>. We

recall the familiar scalar product, or dot product given by

x>y = x1y1 + x2y2 + · · ·+ xnyn.

Lemma 2.22. For all vectors x, y, and z in Rn and for all scalars α:

(i) x>y = y>x,
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(ii) (αx)>y = α(x>y),

(iii) (x + y)>z = x>z + y>z,

(iv) x>x ≥ 0 where x>x = 0 if and only if x = 0

Theorem 2.23 (The Cauchy-Schwarz Inequality). Given any x and y in Rn, |x>y| ≤ ||x||2||y||2.

Theorem 2.24. The operator norm ||A||2 is the square root of the largest eigenvalue of AHA.

Definition 2.25. We say a matrix norm || · ||m is compatible with a vector norm || · ||v if for all A ∈ Fm×n

and x ∈ Fn, ||Ax||v ≤ ||A||m · ||x||v.

Definition 2.26. Define the Frobenius norm of A to be

||A||F =

 n∑
i=1

n∑
j=1

|aij |2
1/2

.

Theorem 2.27. The Frobenius norm of A is compatible with ||x||2.

2.5 Residual Error

Definition 2.28. Consider Ax = b. Let x be the true solution and let x̂ be the approximate solution.

Define e = x− x̂ be the error vector and let r = b−Ax̂ = Ax−Ax̂ = Ae be the residual vector.

Theorem 2.29. For all n-vector y for an invertible matrix A such that Ax = b,

||y||
||A−1||

≤ ||Ay|| ≤ ||A|| · ||y||.

Definition 2.30. Define κ(A) = ||A|| · ||A−1|| to be the condition number of A when κ(A) ≥ 1.

Theorem 2.31. The relative error of ||e||/||x|| is as large as κ(A) · ||r||/||b||.

Remark. Method for iteratively solving for the solution of a linear system. Consider the origin matrix

A. To find Ax̂ set r = b − Ax̂ and solve Ae = r. Call the computed solution ê. Then ||ê||/||x̂|| is

approximately ||e||/||x||, e.g. if ||ê||/||x̂|| ≈ 10−s, then we expect x̂ has approximately s significant digits

as an approximation to x̂. Also expect that ê has s significant digits as an approximation to e, but the

absolute error in ê is much smaller than the absolute error in x̂. If ||ê||/||x̂|| sufficienty small, then x̂ + ê is

the approximate solution. Else set x̂′ = x̂ + ê and repeat the procedure. Solving successive systems is not

very expensive since elimination required 2/3n3 and each solve requires 2n2.

Definition 2.32. The method of backward error analysis involves considering the approximation to be the

exact solution of a perturbed system. Let x̂ be the approximate solution of Ax = b and consier x̂ to be the

exact solution of Âx = b where Â = A−E for some matrix E. Then a bound on E can be found to analyze

its effect on x̂ as an approximation to x.

Theorem 2.33. In general, the bound on the error in x̂ relative to x̂ is

||x− x̂||
||x̂||

≤ κ(A) · ||E||
||A||

.
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Theorem 2.34. Let x̂ be the computed PLU solution of a linear system and the exact solution of (A +

PE)x̂ = b for some n× n matrix E. Let u = n · 1.01 · u where u is the unit roundoff. If

|eij | ≤ un|(P>A)ij |+ un(3 + un)

n∑
k=1

|l̂ik · |ûkj

then the following is usually true,

||E|| ≤ n · u · ||A|| and
||x− x̂||
||x̂||

≤ κ(A) · n · u.

Remark. If κ(A) is large in the above formula, the system is ill-conditioned, although we must compare

to u since this definition changes with precision. Let s = − logβ(κ(A) · n · u). Then this method gets us

approximately s significant digits in x̂ and each successive iteration gets about s more significant digits.

2.6 General Iterative Methods

Definition 2.35 (General Iterative Method). Let M be a real n× n matrix, and let x(0) be a vector in

Rn. Generate a sequence of vector x(0),x(1),x(2), . . . by setting

x(k+1) = Mx(k) + g for k = 0, 1, 2, . . .

where g is a given fixed vector in Rn.

Lemma 2.36. If x(k) → x̂ as k →∞, then x̂ = M x̂+g, so x̂ is a solution of the linear system (I−M)x̂ = g.

Theorem 2.37. Let || · || be a vector norm on Rn, and let α = ||M ||, the matrix norm of M subordinate to

the vector norm || · ||. Suppose α = ||M || < 1. Then

(i) I −M is invertible,

(ii) For any choice of x(0), the sequence x(k) generated by x(k+1) = Mx(k) +g converges to x̂, i.e. x(k) → x̂

as k →∞.

(iii) If e(k) = x(k) − x̂, then ||e(k)|| ≤ αk||e(0)||.
This theorem is a special case of the Contraction Mapping Fixed Point Theorem.

Definition 2.38 (Splitting Methods). Choose matrices N and P for which A = N −P , and consider the

iteration

Nx(k+1) = Px(k) + b for k = 0, 1, 2, . . . .

We want to choose N and P so that (i) N is invertible, (ii) Nx = b is easy to solve, and (iii) ||N−1P || < 1 in

some norm. Analytically, the iteration is the same as x(k+1) = Mx(k) + g where M = N−1P and g = N−1b

(multiply original iteration by N−1). Each iteration is solving the linear system Nx = w for x(k+1) where

w = Px(k) + b.

Lemma 2.39. For the methods descibed above,

(i) if the iteration converges, i.e. x(k) converges, it converges to a solution of Ax = b,

(ii) if N is invertible and ||N−1P || < 1 (in some matrix norm subordinate to a vector norm on Rn), the

iteration converges to the unique solution of Ax = b.
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Definition 2.40 (Jacobi’s Method). Given an n× n matrix A, let

L =


0 0 · · · 0

a21 0 · · · 0
...

...
. . .

...

an1 an2 · · · 0

 , D =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 , U =


0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...

0 0 · · · 0

 .
Then A = L+D+U . Choose N = D and P = −(L+U). Jacobi’s method involves iteratively applying the

following

Dx(k+1) = −(L+ U)x(k) + b.

This is equivalent to the equation:

x
(k+1)
i =

bi −∑
j<i

aijx
(k)
j −

∑
j>i

aijx
(k)
j

 /aii

for 1 ≤ i ≤ n and k = 0, 1, . . ..

Definition 2.41. A matrix is called (strictly row) diagonally dominant if

|aii| >
∑
j 6=i

|aij | for 1 ≤ i ≤ n.

Theorem 2.42. If A is diagonally dominant, then Jacobi’s Method converges.

Definition 2.43 (Gauss-Seidel). From the decompositon in Jacobi’s method, choose N = D + L and

P = −U and iteratively compute:

(D + L)x(k+1) = −Ux(k) + b.

In the kth iteration (computing x(k+1) from x(k)), this system for x(k+1) is solved by forward substitution.

x
(k+1)
i =

bi −∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

 /aii

for 1 ≤ i ≤ n and k = 0, 1, . . ..

Remark. For Gauss-Seidel, only one vector is needed to store x(k) and x(k+1) since x can be overwritten

in-place.

Theorem 2.44. If A is diagonally dominant, then Gauss-Seidel converges, that is, for any choice of x(0),

the sequence x(k) generated by (D + L)x(k+1) = −Ux(k) + b converges to the unique solution of Ax = b.

Definition 2.45. A real n × n matrix is called symmetric positive definite, or just positive definite, if A is

symmetric, i.e. A>A and for all x 6= 0, x>Ax > 0.

Theorem 2.46. A real symmetric n × n matrix is positive definite if and only if all of its eigenvalues are

positive.

Theorem 2.47. If A is symmetic positive definite, then Gauss-Seidel converges.

Remark. Usually Gauss-Seidel converges to the true solution faster than Jacobi’s method.
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Definition 2.48 (Successive Over-Relaxation (SOR)). This is a variant of Gauss-Seidel. Rewrite the

Gauss-Seidel iteration as

x
(k+1)
i = x

(k)
i +

bi −∑
j<i

aijx
(k+1)
j −

∑
j≥i

aijx
(k)
j

 /aii.

Fix an ω where 0 < ω < 2. The SOR iteration is

x
(k+1)
i = x

(k)
i + ω

bi −∑
j<i

aijx
(k+1)
j −

∑
j≥i

aijx
(k)
j

 /aii.

When 0 < ω < 1, it is called under-relaxation; when ω = 1, it is Gauss-Seidel; when 1 < ω < 2, it is called

over-relaxation. In matrix form,

x(k+1) = x(k) + ωD−1
(
b− Lx(k+1) − (D + U)x(k)

)
(D + ωL)x(k+1) = Dx(k) + ω(b− (D + U)x(k))

x(k+1) = (D + ωL)−1((1− ω)D − ωU)x(k) + ω(D + ωL)−1b

x(k+1) = Mωx(k) + gω

2.7 Linear Least Squares

Definition 2.49 (Linear Least Squares). Often times the linear system Ax = b where A is an m × n
real matrix and b ∈ Rm has no solution since m > n. The range of A has dimension less than or equal to

n < m so it is a proper subspace of Rm and there are many b ∈ Rm for which no solution exists. Instead,

we find a vector x ∈ Rn that minimizes

||e||22 = ||Ax− b||22 =

m∑
i=1

 n∑
j=1

aijxj − bi

2

,

the sum of the squares of the error terms.

Theorem 2.50. Let Y be a subspace of Rm and let b ∈ Rm. Then there is a unqiue closest element ŷ of

Y to b in the 2-norm || · ||2, i.e. ||b − ŷ||2 ≤ ||b − y||2 for all y ∈ Y and ||b − ŷ||2 < ||b − y||2 for y 6= ŷ.

Moreover, b− ŷ is orthogonal to Y i.e. (b− ŷ)>y = 0 for all y ∈ Y .

Theorem 2.51 (The Normal Equations). Given a real m× n matrix A, vectors a,b ∈ Rm and x ∈ Rn

minimizes ||Ax− b||22 if and only if x is a solution of the normal equations

A>Ax = A>b.

Remark. Computation concerns with linear least squares:

(i) The normal equations are often very ill-conditioned in the 2-norm, κ(A>A) = κ(A)2, so it is not always

best to use the normal equations.

(ii) Better numerical methods for linear least squares problems: QR factorization (closely related to Gram-

Schmidt), Singular Value Decomposition (for ill-conditioned problems).
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3 Solutions of Non-Linear Systems

3.1 Methods for Solving Non-Linear Systems

Definition 3.1. A real number x for which f(x) = 0 is called a root of that equation; x is called a emph of

f .

Definition 3.2 (General Methods of Solving Linear Equations). To solve a non-linear equation, write

it in the form f(x) = 0, assuming that f is a continuous real-valued function that is defined on some interval

I ∈ R. In practice, locate approximately a zero s of the given function f . We want to find an x such that

|x− s| is small or |f(x)| is small.

Theorem 3.3. If f is continuous on [a, b] and f(a)f(b) < 0, then there exists an s ∈ (a, b) for which f(s) = 0.

Definition 3.4 (Bisection Method). The bisection method is a bracketing method where at each step in

the iteration, we have an interval [a, b] in which f as a 0. Start with an interval [a, b] that brackets a zero of

f , i.e. f(a)f(b) < 0. For each step, shrink the length of the interval by a fator of 2 while still bracketing a

zero of f . The bisection method is guaranteed to converge, but it has a slow convergence rate, approximately

3 iterations per decimal digit of accuracy.

Definition 3.5 (Newton’s Method). Start with an approximation x0 to s. Iteratively, find the zero of

the tangent line to the graph of f at (xn, f(xn)) to get xn+1. Converges rapidly if it converges, so it needs

to start sufficiently close to the zero and we ened to be able to evaluate f ′, i.e. computable and f ′(s) 6= 0.

Definition 3.6 (Secant Method). Start with two approximations xn−1 and xn to s. Find the zero of the

secant line joining the two previous points (xn−1, f(xn−1)), (xn, f(xn)). Similar to Newton’s method with a

slower convergence, but f ′ is not required to evaluate the derivative f ′.

Remark. Ideally, we would like the dependability of the bisection method and the speed of Newton. For

example, Regular Falsi (see text) is a bracketing method similar to the secant method. Often, one endpoint

converges quickly to a zero of f . Brent’s Method (also called the Brent-Dekker method) is a combination of

bisection, secant, and inverse quadratic interpolation that converges rapidly.

3.2 Fixed-Point Iteration

Remark. Many iterative methods, e.g. Newton’s method, can be viewed as xn+1 = g(xn) where g is some

particular function.

Definition 3.7. For a function g, a fixed point of g is a point x where g(x) = x.

Theorem 3.8. If xn+1 = g(xn) where g is continuous and xn converges to a number ζ in the domain of g,

then g(ζ) = ζ, i.e. ζ is a fixed point.

Theorem 3.9. Let g be a continuous function on a closed bounded interval I = [a, b], and suppose for all

x ∈ I, g(I) ∈ I, i.e. g maps I to itself. Then g has at least one fixed point in I.

Theorem 3.10 (Contraction Mapping Fixed-Point Theorem, Differentiable Functions). Suppose

g is differentiable on a closed, bounded interval I = [a, b], that g maps I to itself, and for some L < 1,

|g′(x)| ≤ L < 1 for all x ∈ I. Then the following are true:

(i) g has a unique fixed point in I; call it ζ,

16



(ii) for any x0 ∈ I, xn+1 = g(xn) generates a sequence such that xn → ζ,

(iii) if en = xn − ζ, then

|en| ≤
Ln

1− L
|x1 − x0|.

Corollary 3.11 (Local Convergence Theorem). Suppose g is continuously differentiable in an open

interval I containing a fixed point ζ, and suppose |g′(ζ)| < 1. Then there exists an ε > 0, so that when

|x0 − ζ| ≤ ε, the fixed-point iteration xn+1 = g(xn) yields a sequence xn with xn → ζ.

Definition 3.12. Let x0, x1, x2, . . . be a sequence which converges to a number ζ. Let en = xn − ζ. If there

is a number p ≥ 1 and a constant C 6= 0 for which

lim
n→∞

|en+1|
|en|p

= C

then p is called the order of convergence of the sequence and C is called the asymptotic error constant.

Definition 3.13. For specific values of p and C we assign specific names to the order of convergence:

(i) if p = 1 and C = 1, convergence is called sub-linear ;

(ii) if p = 1 and 0 < C < 1, convergence is called linear ;

(iii) if limn→∞ |en+1|/|en| = 0, convergence is called super-linear ;

(iv) if p = 2, convergence is called quadratic.

Definition 3.14. A function f ∈ Ck on an interval [a, b] where k is a non-negative integer when f, f ′, f ′′, . . . , f (k)

are all defined and continuous on [a, b]. In the case of k = 0, f is continuous. In the case of k = 1, f is

continuously differentiable.

Theorem 3.15 (Taylor’s Theorem with Remainder). If f ∈ Ck+1 then for each x, there exists a ζ

between a and x for which

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (k)(a)

k!
(x− a)k +

f (k+1)(ζ)

(k + 1)!
(x− a)k+1.

Theorem 3.16. Suppose g ∈ Ck+1, g(s) = s, xn is generated by xn+1 = g(xn) and xn → s, and g′(s) =

g′′(s) = · · · = g(k)(s) = 0 and g(k+1)(s) 6= 0. Then xn → s to order k + 1 with an asymptotic error constant

of |g(k+1)(s)|/(k + 1)!.

Theorem 3.17. Suppose f ∈ C3, f(s) = 0, f ′(s) 6= 0, and xn is generated by Newton’s method xn+1 =

xn − f(xn)/f ′(xn). Then

(i) if xn → s, convergence is at least quadratic,

(ii) if x0 is close enough to s, then xn → s.
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