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1 Floating Point and Roundoff Error

1.1 Number Representation

Definition 1.1. Let β > 1 be an integer. We call β the base of a number system. Let ak, bk be integers

such that 0 ≤ ak, bk < β. Then any real number x can be represented by

x = (an an−1 · · · a1 a0 . b1 b2 b3 · · · )β .

We call the dot between a0 and b1 the radix point. Alternatively, we can represent x by two summations:

x = akβ
k + ak−1β

k−1 + · · ·+ a1β + a0 + b1β
−1 + b2β

−2 + · · · =
n∑

k=0

akβ
k +

∞∑
k=1

bkβ
−k

We call the first sum the integral part of x and denote it by xI , and the second sum the fractional part of x

and denote it by xF . We call for formulas above the expansion of x.

Definition 1.2. An expansion of some real number x is said to terminate if there exists some K ≥ 0 such

that bk = 0 for all k ≥ K.

Theorem 1.3. A real number x has a terminating expansion in base β if and only if x is rational and when

x is expressed in simplest form, the only prime factors of the denominator of x are factors of β.

Theorem 1.4. Let x be a real number. If x does not have a terminating expansion in base β, then the

expansion of x in base β is unique. If x ̸= 0, has a terminating expansion in base β, then it has exactly on

terminating expansion (ending in zeros) and exactly one nonterminating expansion (ending in (β − 1)’s).

Remark.

(i) The expansions of negative numbers are just prefixed by a minus sign, e.g. −1/8 = −(0.12500 · · · )10.
(ii) There are algorithms for converting expansions from one case to another.

1.2 Normalized Scientific Notation in Base β

Lemma 1.5. Let β > 1 be an integer. For any real number x > 0, there is a unique integer c and a unique

number r ∈ [1/β, 1) so that x = rβc. The number r can be expressed as an expansion in base β,

r = (. d1 d2 d3 · · · )β

with d1 ̸= 0.

Theorem 1.6. Let x ̸= 0 be any real number. Then x has an expansion in base β,

x = ± (. d1 d2 d3 · · · )β β
c

with d1 ̸= 0.

Definition 1.7. The representation of x in Theorem 1.6 is called the normalized scientific notation for x in

base β. It is unique, except for real numbers x with terminating expansions (which have two expansions);

we always choose the terminating expansion.
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1.3 Floating Point Arithmetic

Definition 1.8. An m-digit floating-point number in base β is denoted by

x = ± (. d1 d2 · · · dm)β β
c

where (. d1 d2 · · · dm)β is called the mantissa and c is called the exponent. If d1 ̸= 0 (or x = 0), called a

normalized floating-point number.

Remark. In computers, the base is usually β = 2 and mantissa lengths usually comes in two sizes: single

(23) and double (52). Additionally, the exponent c has a limited range −M ≤ c ≤M .

Definition 1.9. Any real number can be represented approximately by floating-point numbers. For every

real number x, the floating-point value fl(x) is the approximate value of x. Generally, fl is only well defined

for some domain {x : βµ−1 ≤ |x| < βM}. Otherwise, underflow or overflow occurs.

Definition 1.10. The function fl is commonly defined in two different ways:

(i) Rounding - fl(x) is the normalized floating-point number closest fo x. In case of a tie, round to an even

digit (symmetric rounding about 0).

(ii) Truncating - fl(x) is the nearest normalized floating-point number between x and 0.

Remark. A more precise definition of the fl functions exists for even β. Let x = ±rβc be a real number in

normalized scientific notation where

r = (0 . d1 d2 d3 · · · )

Then fl(x) for an m-digit floating-point representation with a maximum M exponent is

fl(x) =



0, x = 0

underflow, 0 < |x| < βµ−1 (possibly extended to βµ−m ≤ |x| < βµ−1)

overflow, |x| ≥ βM

±(. d1 d2 · · · dm)ββ
c, truncating

±(. d1 d2 · · · dm)ββ
c, rounding, ( dm+1 dm+2 · · · ) < 1/2

± [(. d1 d2 · · · dm)β + (.00 · · · 1)β ]βc, rounding, ( dm+1 dm+2 · · · ) > 1/2

± [(. d1 d2 · · · dm)β + (.00 · · · 1)β ]βc, rounding, ( dm+1 dm+2 · · · ) = 1/2, dm is odd

± [(. d1 d2 · · · dm)β − (.00 · · · 1)β ]βc, rounding, ( dm+1 dm+2 · · · ) = 1/2, dm is even

1.4 Absolute and Relative Error

Definition 1.11. Suppose that x′ is an approximation to a real number x. Then the absolute error in x′ is

x− x′ and the relative error in x′ (if x ̸= 0) is (x− x′)/x.

Definition 1.12. The roundoff error is the error in fl(x) as an approximation to x. Usually it is absolute

error x− fl(x).

Theorem 1.13. Suppose βµ−1 ≤ |x| < βM . Define δ = δ(x) = (fl(x)− x)/x to be the relative error of fl(x).

(i) For rounding, |δ| ≤ β1−m/2.

(ii) For truncating, −β1−m < δ ≤ 0.

Definition 1.14. The maximum possible value for |δ| when there is no underflow or overflow is called the

unit roundoff, denoted by u. In rounding, u = β1−m/2. In truncating, u = β1−m.

5



Remark. The value δ = (fl(x) − x)/x can be rearranged to form fl(x) = x(1 + δ). This is useful in error

analysis. If we define ε(x) = (fl(x)−x)/fl(x), then |ε| < β1−m/2 for rounding and |ε| < β1−m for truncating.

Here, fl(x) = x/(1 + ϵ).

Definition 1.15. The machine epsilon is defined to be ε = sup{y > 0 : fl(1 + y) = 1}.

Remark. The machine epsilon can also be defined to be ε = inf{y > 0 : fl(1 + y) > 1}. The machine epsilon

is exactly the same as the unit roundoff.

1.5 Arithmetic Operations with Floating-Point Numbers

Definition 1.16. With β,m fixed, the set of floating-point numbers is not closed under the usual operations

+, −, ×, and ÷. Machines are usually constructed so that

x ◦∗ y = fl(x ◦ y).

where ◦ is +, −, ×, or ÷, and ◦∗ is the corresponding floating-point operation. Unless underflow or overflow

occurs

x ◦∗ y = (x ◦ y)(1 + δ)

for some δ where δ ≤ u where x, y are floating-point numbers. Alternatively,

x ◦∗ y = (x ◦ y)/(1 + ε)

for some ε where |ε| ≤ µ.

Theorem 1.17. Suppose 0 < u < 1 and |δj | ≤ u for j = 1, . . . , r. Then there exists a δ with |δ| ≤ u such

that

(1 + δ1) · · · (1 + δr) = (1 + δ)r

Corollary 1.18. For the theorem above, if ru≪ 1, then (1 + δ)r ≈ 1 + rδ.

Remark. For two real number p, q, the operation fl(p)× fl(q) is

fl(p)× fl(q) = pq(1 + δ1)(1 + δ2)(1 + δ3) = pq(1 + δ)3.

This kind of analysis is called backward error analysis.

Definition 1.19. Suppose x is written in normalized scientific notation in base β,

x = (. d1 d2 d3 · · · )ββc

where d1 ̸= 0. The digit dj is called the j-th significant digit of x; dj is the coefficient of βc−j .

Definition 1.20. Suppose x′ is an approximation to x. If |x− x′| ≤ βc−r/2, we say x′ approximates x to r

significant digits. Very approximately, the number of significant digits in x′ is − logβ |(x− x′)/x|.

Theorem 1.21. Very approximately, if x and y have t significant digits, have the same sign, and agree to s

significant digits, then the computed value of x− y will have only t− s significant digits.

Theorem 1.22. Let x1, x2, . . . , xn+1 be positive normalized floating-point numbers, + be true addition,⊕
be machine addition, u be the unit roundoff with 0 < u < 1, and assume no overflow when we add

x1, . . . , xn+1. Then there are numbers δ1, . . . , δn with |δj | ≤ u for which
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(i) x1
⊕
x2 = (x1 + x2)(1 + δ1)

(ii) (x1
⊕
x2)
⊕
x3 = (x1 + x2)(1 + δ1)(1 + δ2) + x3(1 + δ2)

(iii) x1
⊕
x2
⊕

· · ·
⊕
xn+1 = (x1 + x2)(1 + δ1) · · · (1 + δn) + x3(1 + δ2) · · · (1 + δn) + · · ·+ xn+1(1 + δn)

Remark. Consider solving ax2 + bx+ c = 0 by the quadratic formula when ac ̸= 0, b ̸= 0, and b2 − 4ac > 0.

The two solutions can be each written in two ways:

−b+
√
b2 − 4ac

2a
=

(
−b+

√
b2 − 4ac

2a

)(
−b−

√
b2 − 4ac

−b−
√
b2 − 4ac

)
=

4ac

2a(−b−
√
b2 − 4ac)

=
2c

−b−
√
b2 − 4ac

,

and similarly,
−b−

√
b2 − 4ac

2a
=

2c

−b+
√
b2 − 4ac

.

When b > 0, −b+
√
b2 − 4ac could have cancellation, and when b < 0, −b−

√
b2 − 4ac could have cancellation.

Thus a better implementation of the quadratic formula is when b > 0, the two roots are 2c/(−b−
√
b2 − 4ac)

and (−b−
√
b2 − 4ac)/2a, and when b < 0, the two roots are (−b+

√
b2 − 4ac)/2a and 2c/(−b+

√
b2 − 4ac).

1.6 Converting Between Bases

Theorem 1.23. Suppose N = (an an−1 · · · a0)α is represented in base α. The expansion of N in base β can

be found using two different methods:

(i) Express α, a0, a1, · · · , an in base β. Then N is

N = (((an · α+ an−1) · α+ · · · ) · α+ a1) · · ·α+ a0

where each operation is in base β arithmetic.

(ii) Suppose N = (cm cm−1 · · · c0)β . Then

N = c0 + β · (c1 + β · (c2 + · · · )).

Theorem 1.24. Suppose x = (. b1 b2 · · · bm)α is represented in base α. The expansion of x in base β can be

found using two different methods:

(i) Express α, b1, b2 · · · , bm in base β. Then N is

N = (((bm/α+ bm−1)/α+ · · ·+ b2)/α+ b1)/α

where each operation is in base β arithmetic.

(ii) Suppose N = (cm cm−1 · · · c0)β . The expansion of x can be found by successively solving for each

coefficient in base β. Let x = (. c1 c2 · · · )β for unknown coefficients c1, c2, . . ..

βx = (c1 . c2 c3 · · · )β , so c1 = (βx)I

β(βx)F = (c2 . c3 c4 · · · )β , so c2 = (β(βx)F )I

...
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2 Solutions of Linear Systems

2.1 Solutions of Linear Systems using Elimination

Definition 2.1. Consider the matrix equation Ax = b where A is an upper triangular matrix whose diagonal

entires are all non-zero, that is,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a22x2 + · · ·+ a2nxn = b2

...

annxn = bn

To solve for x, begin with xn: xn = bn/ann. Then solve for xn−1: xn−1 = (bn−1 − an−1,nxn)/an−1,n−1. In

general,

xk =
bk −

∑n
j=k+1 akjxj

akk
.

This method of solving is called back subtitution.

Theorem 2.2. An upper triangular matrix A is invertible if and only if all diagonal entries are non-zero.

Definition 2.3. For any matrix equation Ax = b where A is a square matrix, the method of solving for x

by transforming the equation into an equivalent equation where the matrix is an upper triangular matrix is

called Gaussian elimination. This transformation requires finding a sequence of equivalent linear systems

A(k)x = b(k), 0 ≤ k ≤ n− 1

where A(0) = A,b(0) = b and A(n−1) is an upper triangular matrix. The i-th equation and (i+1)-th equation

is separated by a single row operation.

Remark. Fix k > 1 (the case k − 1 = 0 is trivial). If a
(k−1)
kk ̸= 0, add a multiple −a(k−1)

ik /ak−1
kk of k-th row to

the i-th row for i = k + 1, . . . , n. Then akik = 0 for i = k + 1, . . . , n.

Remark. The value mik = a
(k−1)
ik /a

(k−1)
kk gets stored in the ik-position (if no pivoting).

Definition 2.4. Assuming no pivoting is necessary, Gaussian elimination reduces to

An−1 =Mn−1 · · ·M1A
(0).

where mik = a
(k−1)
ik /a

(k−1)
kk and

Mk =



1 0

1

1

−mk+1,k 1
...

. . .

0 −mn,k 0 1


.

Let U = A(n−1). U is upper triangular with non-zero diagonal elements. Then

A =M−1
1 M−1

2 · · ·M−1
n−1U.
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Now,

M−1
k =



1 0

1

1

mk+1,k 1
...

. . .

0 mn,k 0 1


.

Let L =M−1
1 M−1

2 · · ·M−1
n−1. Then

L =


1

m21 1

m31 m32 1
...

...
. . .

mn1 mn2 · · · · · · 1

 .

and A = LU . The product LU the LU factorization of A. The matrix L is a unit lower-triangular matrix.

Remark. Let y be the solution of Ly = b. Since L =M−1
1 M−1

2 · · ·M−1
n−1,

y =Mn−1 · · ·M1b.

Solving for y is equivalent to performing elimination steps on b. Then we only need to solve Ux = y to

obtain x. Since x is upper-triangular we only need to perform back subtitution.

Consider solving Ax = b for an n× n matrix using Gaussian elimination.

Step Multiplies (Scaling) Multiplies (Elimination) Additions (Eliminations)

A(0) → A(1) n− 1 (n− 1)2 (n− 1)2

A(1) → A(2) n− 2 (n− 2)2 (n− 2)2

...
...

...
...

A(n−3) → A(n−2) 2 4 4

A(n−2) → A(n−1) 1 1 1

The total number of multiplication operations is

n−1∑
j=1

j +

n−1∑
j=1

j2 =
n(n− 1)

2
+
n(n− 1)(2n− 1)

6
≈ 1

3
n3

while the total number of additions is

n−1∑
j=1

j2 =
n(n− 1)(2n− 1)

6
≈ 1

3
n3.

Thus the total number of operations is 2n3/3.

Consider instead using the LU-factorization of A. For the forward elimination step (Ly = b),

Solving Multiplies Additions

y2 1 1

y3 2 2
...

...
...

yn−1 n− 2 n− 2

yn n− 1 n− 1
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the total number of operations is

n−1∑
j=1

j +

n−1∑
j=1

j =
n(n− 1)

2
+
n(n− 1)

2
≈ n2.

For the back substitution step,

Solving Multiplies Additions

xn 1 0

xn−1 2 1
...

...
...

x2 n− 1 n− 2

x1 n n− 1

the total number of operations is

n∑
j=1

j +
n−1∑
j=0

j =
n(n+ 1)

2
+
n(n− 1)

2
≈ n2.

Therefore, the LU-factorization method requires 2n2 operations.

2.2 Interchanging

Theorem 2.5. Let U be an equivalent, upper-triangular form of A, that is,

U = (Mn−1Pn−1) · · · (M1P1)A,

where Pk is either the identity matrix if no interchanging occurs in the k-th step or Pk just interchanges row

k with row I for some I > k.

Theorem 2.6. Suppose k > l and Pk interchanges rows k and I where I > k. Then PkMl = M̃lPk where

M̃lP is the same as Ml except hte multiplies mkl and mIl have been interchanged.

Pk =


1

0 1

1 0

1

 PkMl =


1

1

mIl 0 1

mkl 1 0

1


Definition 2.7. Let the matrix M̂l be the same asMl, except all the multiplies in the i-th columns have been

interchanged by the Pk’s for k > l. Then, U = (M̂n−1 · · · M̂1)(Pn−1 · · ·P1)A = L−1P⊤A. Then, A = PLU .

This is called the PLU factorization of A. Note that P⊤A = LU , so it also encodes the LU factorization of

(Pn−1 · · ·P1)A which is just A wiht its rows permuted.

2.3 Pivoting

Definition 2.8. In elimination, a pivotal equation is the equation used to elimination an unknown from the

other equations. At the start of the k-th elimination step, a pivotal equation is the equation with a non-zero

coefficient for xk in the k-th, k + 1-th, . . ., n-th equations.

Theorem 2.9. A is invertible if and only if there is at least one pivotal equation at every elimination step.
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Remark. Pivoting can be viewed as multiplying A by a permutation matrix P⊤, and then finding the LU-

factorization of P⊤A. Then, A = PLU .

Theorem 2.10. Every invertible matrix A can be written as a product PLU where P is a permutation

matrix, L is a unit lower-triangular matrix and U is an (invertible) upper triangular matrix.

Theorem 2.11. An invertible matrix A has an LU-factorization if and only if each of the upper left hand

submatrices

Ak =


a11 . . . a1k
...

. . .
...

ak1 . . . akk


for k = 1, . . . , n are invertible.

Remark. In practice, not every pivot equation is good for numerical calculations

(i) Do not choose near-zero pivots.

(ii) Cannot just use absolute comparison of a
(k−1)
ik .

(iii) The best pivot maximizes the ratio of the size of pivot entry to the size of the row.

Remark. Suppose we are on the k-th step of Gaussian Elimination (where 1 ≤ k ≤ n − 1). The current

matrix looks like

A(k−1) =



a
(k−1)
11 · · · a

(k−1)
1n

. . .

a
(k−1)
kk

...
...

. . .

a
(k−1)
nk · · · a

(k−1)
nn .


Which entries a

(k−1)
kk , · · · , a(k−1)

nk should we use as the k-th pivot element?

Definition 2.12. The technique of simple pivoting involves choosing the pivot row with the smallest I ≥ k

for which A
(k−1)
Ik ̸= 0, and interchanging the k-th row and the I-th row.

Definition 2.13. The technique of partial pivoting involves choosing the pivot row with the entry
∣∣∣a(k−1)

Ik

∣∣∣
that is the largest of

∣∣∣a(k−1)
kk

∣∣∣ , ∣∣∣a(k−1)
k+1,k

∣∣∣ , · · · , ∣∣∣a(k−1)
nk

∣∣∣, and interchanging the k-th row and the I-th row.

Definition 2.14. The technique of scaled partial pivoting involves computing scale factors for each row:

di = max
1≤j≤n

|aij | for i = 1, . . . , n

before elimination procedure begins and interchanging them when rows are interchanged. At the k-th step,

the pivot row for which a
(k−1)
Ik /dI is the maximized for all I ≥ k, is chosen, and the k-th and I-th row are

interchanged. Alternatively, the scale factors can be recomputed at every step.

Definition 2.15. In total pivoting, the columns are also interchanged. At the k-th step, choose I ≥ k and

J ≥ k for which |a(k−1)
IJ | is the maximum of |aij | for i = k, . . . , n and j = k, . . . , n. Interchange the k-th row

and the I-th row and interchange the k-th column and the J-th column.

Lemma 2.16. The operation counts of each pivoting strategy are as follows:
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(i) partial pivoting:
∑(n−1)

k=1 (n− k) ≈ n2/2,

(ii) scaled pivoting (without updating scale factors): n(n− 1) +
∑(n−1)

k=1 [(n− k + 1) + (n− k)] ≈ 2n2,

(iii) scaled pivoting (updating scale factors):
∑(n−1)

k=1 [(n− k + 1)(n− k) + (n− k + 1) + (n− k)] ≈ n3/3,

(iv) total pivoting:
∑n−1

k=1

[
(n− k + 1)2 − 1

]
≈ n3/3.

2.4 Vector Norms on Rn and Cn

Definition 2.17. A norm on a vector space is a function that maps a vector, x ∈ V, to a number and is

denoted by ||x||. A norm must satisfy the following properties for all x,y ∈ Fn and α ∈ F where F is R or

C:
(i) ||x|| ≥ 0; ||x|| = 0 if and only if x = 0,

(ii) ||αx|| = |α| · ||x||,
(iii) ||x+ y|| ≤ ||x||+ ||y|| (triangle inequality).

Remark. Common examples of vector norms include:

(i) ||x||1 =
∑

1≤j≤n |xj |,

(ii) ||x||2 =
(∑n

j=1 |aj |2
)1/2

,

(iii) ||x||∞ = max1≤j≤n |aj |.

Definition 2.18. The set of n×n matrices is itself a vector space. A norm on this vector space satisfies for

matrices A,B ∈ Fn×n and α ∈ F where F is R or C:
(i) ||A|| ≥ 0 and ||A|| = 0 if and only if A is the 0 matrix,

(ii) ||αA|| = |α| · ||A||,
(iii) ||A+B|| ≤ ||A||+ ||B||.
We call the norm a matrix norm if in addition we have

||AB|| ≤ ||A|| · ||B||.

Definition 2.19. Given a vector norm on Rn (or Cn), the operator norm induced by vector norm, or just

operator norm, on n× n matrices is

||A|| = sup
x̸=0

||Ax||
||x||

.

Informally, this norm gives the maximum stretch factor when x is mapped through A. For p = 1, 2,∞, we

call the operator norm induced by || · ||p also ||A||p.

Theorem 2.20. For p = 1 and p = ∞, there are explicit expressions for ||A||1 and ||A∞||.

||A||1 = max
1≤j≤n

n∑
j=1

|aij | ||A||∞ = max
1≤i≤n

n∑
j=1

|aij |

Definition 2.21. Let x and y be vectors in Rn where x = (x1, x2, . . . , xn)
⊤ and y = (y1, y2, . . . , yn)

⊤. We

recall the familiar scalar product, or dot product given by

x⊤y = x1y1 + x2y2 + · · ·+ xnyn.

Lemma 2.22. For all vectors x, y, and z in Rn and for all scalars α:

(i) x⊤y = y⊤x,

12



(ii) (αx)⊤y = α(x⊤y),

(iii) (x+ y)⊤z = x⊤z+ y⊤z,

(iv) x⊤x ≥ 0 where x⊤x = 0 if and only if x = 0

Theorem 2.23 (The Cauchy-Schwarz Inequality). Given any x and y in Rn, |x⊤y| ≤ ||x||2||y||2.

Theorem 2.24. The operator norm ||A||2 is the square root of the largest eigenvalue of AHA.

Definition 2.25. We say a matrix norm || · ||m is compatible with a vector norm || · ||v if for all A ∈ Fm×n

and x ∈ Fn, ||Ax||v ≤ ||A||m · ||x||v.

Definition 2.26. Define the Frobenius norm of A to be

||A||F =

 n∑
i=1

n∑
j=1

|aij |2
1/2

.

Theorem 2.27. The Frobenius norm of A is compatible with ||x||2.

2.5 Residual Error

Definition 2.28. Consider Ax = b. Let x be the true solution and let x̂ be the approximate solution.

Define e = x− x̂ be the error vector and let r = b−Ax̂ = Ax−Ax̂ = Ae be the residual vector.

Theorem 2.29. For all n-vector y for an invertible matrix A such that Ax = b,

||y||
||A−1||

≤ ||Ay|| ≤ ||A|| · ||y||.

Definition 2.30. Define κ(A) = ||A|| · ||A−1|| to be the condition number of A when κ(A) ≥ 1.

Theorem 2.31. The relative error of ||e||/||x|| is as large as κ(A) · ||r||/||b||.

Remark. Method for iteratively solving for the solution of a linear system. Consider the origin matrix

A. To find Ax̂ set r = b − Ax̂ and solve Ae = r. Call the computed solution ê. Then ||ê||/||x̂|| is

approximately ||e||/||x||, e.g. if ||ê||/||x̂|| ≈ 10−s, then we expect x̂ has approximately s significant digits

as an approximation to x̂. Also expect that ê has s significant digits as an approximation to e, but the

absolute error in ê is much smaller than the absolute error in x̂. If ||ê||/||x̂|| sufficienty small, then x̂+ ê is

the approximate solution. Else set x̂′ = x̂ + ê and repeat the procedure. Solving successive systems is not

very expensive since elimination required 2/3n3 and each solve requires 2n2.

Definition 2.32. The method of backward error analysis involves considering the approximation to be the

exact solution of a perturbed system. Let x̂ be the approximate solution of Ax = b and consier x̂ to be the

exact solution of Âx = b where Â = A−E for some matrix E. Then a bound on E can be found to analyze

its effect on x̂ as an approximation to x.

Theorem 2.33. In general, the bound on the error in x̂ relative to x̂ is

||x− x̂||
||x̂||

≤ κ(A) · ||E||
||A||

.
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Theorem 2.34. Let x̂ be the computed PLU solution of a linear system and the exact solution of (A +

PE)x̂ = b for some n× n matrix E. Let u = n · 1.01 · u where u is the unit roundoff. If

|eij | ≤ un|(P⊤A)ij |+ un(3 + un)

n∑
k=1

|l̂ik · |ûkj

then the following is usually true,

||E|| ≤ n · u · ||A|| and
||x− x̂||
||x̂||

≤ κ(A) · n · u.

Remark. If κ(A) is large in the above formula, the system is ill-conditioned, although we must compare

to u since this definition changes with precision. Let s = − logβ(κ(A) · n · u). Then this method gets us

approximately s significant digits in x̂ and each successive iteration gets about s more significant digits.

2.6 General Iterative Methods

Definition 2.35 (General Iterative Method). Let M be a real n× n matrix, and let x(0) be a vector in

Rn. Generate a sequence of vector x(0),x(1),x(2), . . . by setting

x(k+1) =Mx(k) + g for k = 0, 1, 2, . . .

where g is a given fixed vector in Rn.

Lemma 2.36. If x(k) → x̂ as k → ∞, then x̂ =M x̂+g, so x̂ is a solution of the linear system (I−M)x̂ = g.

Theorem 2.37. Let || · || be a vector norm on Rn, and let α = ||M ||, the matrix norm of M subordinate to

the vector norm || · ||. Suppose α = ||M || < 1. Then

(i) I −M is invertible,

(ii) For any choice of x(0), the sequence x(k) generated by x(k+1) =Mx(k)+g converges to x̂, i.e. x(k) → x̂

as k → ∞.

(iii) If e(k) = x(k) − x̂, then ||e(k)|| ≤ αk||e(0)||.
This theorem is a special case of the Contraction Mapping Fixed Point Theorem.

Definition 2.38 (Splitting Methods). Choose matrices N and P for which A = N −P , and consider the

iteration

Nx(k+1) = Px(k) + b for k = 0, 1, 2, . . . .

We want to choose N and P so that (i) N is invertible, (ii) Nx = b is easy to solve, and (iii) ||N−1P || < 1 in

some norm. Analytically, the iteration is the same as x(k+1) =Mx(k)+g where M = N−1P and g = N−1b

(multiply original iteration by N−1). Each iteration is solving the linear system Nx = w for x(k+1) where

w = Px(k) + b.

Lemma 2.39. For the methods descibed above,

(i) if the iteration converges, i.e. x(k) converges, it converges to a solution of Ax = b,

(ii) if N is invertible and ||N−1P || < 1 (in some matrix norm subordinate to a vector norm on Rn), the

iteration converges to the unique solution of Ax = b.
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Definition 2.40 (Jacobi’s Method). Given an n× n matrix A, let

L =


0 0 · · · 0

a21 0 · · · 0
...

...
. . .

...

an1 an2 · · · 0

 , D =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann

 , U =


0 a12 · · · a1n
0 0 · · · a2n
...

...
. . .

...

0 0 · · · 0

 .
Then A = L+D+U . Choose N = D and P = −(L+U). Jacobi’s method involves iteratively applying the

following

Dx(k+1) = −(L+ U)x(k) + b.

This is equivalent to the equation:

x
(k+1)
i =

bi −∑
j<i

aijx
(k)
j −

∑
j>i

aijx
(k)
j

 /aii

for 1 ≤ i ≤ n and k = 0, 1, . . ..

Definition 2.41. A matrix is called (strictly row) diagonally dominant if

|aii| >
∑
j ̸=i

|aij | for 1 ≤ i ≤ n.

Theorem 2.42. If A is diagonally dominant, then Jacobi’s Method converges.

Definition 2.43 (Gauss-Seidel). From the decompositon in Jacobi’s method, choose N = D + L and

P = −U and iteratively compute:

(D + L)x(k+1) = −Ux(k) + b.

In the kth iteration (computing x(k+1) from x(k)), this system for x(k+1) is solved by forward substitution.

x
(k+1)
i =

bi −∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

 /aii

for 1 ≤ i ≤ n and k = 0, 1, . . ..

Remark. For Gauss-Seidel, only one vector is needed to store x(k) and x(k+1) since x can be overwritten

in-place.

Theorem 2.44. If A is diagonally dominant, then Gauss-Seidel converges, that is, for any choice of x(0),

the sequence x(k) generated by (D + L)x(k+1) = −Ux(k) + b converges to the unique solution of Ax = b.

Definition 2.45. A real n × n matrix is called symmetric positive definite, or just positive definite, if A is

symmetric, i.e. A⊤A and for all x ̸= 0, x⊤Ax > 0.

Theorem 2.46. A real symmetric n × n matrix is positive definite if and only if all of its eigenvalues are

positive.

Theorem 2.47. If A is symmetic positive definite, then Gauss-Seidel converges.

Remark. Usually Gauss-Seidel converges to the true solution faster than Jacobi’s method.

15



Definition 2.48 (Successive Over-Relaxation (SOR)). This is a variant of Gauss-Seidel. Rewrite the

Gauss-Seidel iteration as

x
(k+1)
i = x

(k)
i +

bi −∑
j<i

aijx
(k+1)
j −

∑
j≥i

aijx
(k)
j

 /aii.

Fix an ω where 0 < ω < 2. The SOR iteration is

x
(k+1)
i = x

(k)
i + ω

bi −∑
j<i

aijx
(k+1)
j −

∑
j≥i

aijx
(k)
j

 /aii.

When 0 < ω < 1, it is called under-relaxation; when ω = 1, it is Gauss-Seidel; when 1 < ω < 2, it is called

over-relaxation. In matrix form,

x(k+1) = x(k) + ωD−1
(
b− Lx(k+1) − (D + U)x(k)

)
(D + ωL)x(k+1) = Dx(k) + ω(b− (D + U)x(k))

x(k+1) = (D + ωL)−1((1− ω)D − ωU)x(k) + ω(D + ωL)−1b

x(k+1) =Mωx
(k) + gω

2.7 Linear Least Squares

Definition 2.49 (Linear Least Squares). Often times the linear system Ax = b where A is an m × n

real matrix and b ∈ Rm has no solution since m > n. The range of A has dimension less than or equal to

n < m so it is a proper subspace of Rm and there are many b ∈ Rm for which no solution exists. Instead,

we find a vector x ∈ Rn that minimizes

||e||22 = ||Ax− b||22 =

m∑
i=1

 n∑
j=1

aijxj − bi

2

,

the sum of the squares of the error terms.

Theorem 2.50. Let Y be a subspace of Rm and let b ∈ Rm. Then there is a unqiue closest element ŷ of

Y to b in the 2-norm || · ||2, i.e. ||b − ŷ||2 ≤ ||b − y||2 for all y ∈ Y and ||b − ŷ||2 < ||b − y||2 for y ̸= ŷ.

Moreover, b− ŷ is orthogonal to Y i.e. (b− ŷ)⊤y = 0 for all y ∈ Y .

Theorem 2.51 (The Normal Equations). Given a real m× n matrix A, vectors a,b ∈ Rm and x ∈ Rn

minimizes ||Ax− b||22 if and only if x is a solution of the normal equations

A⊤Ax = A⊤b.

Remark. Computation concerns with linear least squares:

(i) The normal equations are often very ill-conditioned in the 2-norm, κ(A⊤A) = κ(A)2, so it is not always

best to use the normal equations.

(ii) Better numerical methods for linear least squares problems: QR factorization (closely related to Gram-

Schmidt), Singular Value Decomposition (for ill-conditioned problems).

3 Solutions of Non-Linear Systems

3.1 Methods for Solving Non-Linear Systems

Definition 3.1. A real number x for which f(x) = 0 is called a root of that equation; x is called a zero of f .
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Definition 3.2 (General Methods of Solving Linear Equations). To solve a non-linear equation, write

it in the form f(x) = 0, assuming that f is a continuous real-valued function that is defined on some interval

I ∈ R. In practice, locate approximately a zero s of the given function f . We want to find an x such that

|x− s| is small or |f(x)| is small.

Theorem 3.3. If f is continuous on [a, b] and f(a)f(b) < 0, then there exists an s ∈ (a, b) for which f(s) = 0.

Definition 3.4 (Bisection Method). The bisection method is a bracketing method where at each step

in the iteration, we have an interval [a, b] in which f has a zero. Start with an interval [a, b] that brackets

a zero of f , i.e. f(a)f(b) < 0. For each step, shrink the length of the interval by a fator of 2 while still

bracketing a zero of f . The bisection method is guaranteed to converge, but it has a slow convergence rate,

approximately 3 iterations per decimal digit of accuracy.

Definition 3.5 (Newton’s Method). Start with an approximation x0 to s. Iteratively, find the zero of

the tangent line to the graph of f at (xn, f(xn)) to get xn+1. Converges rapidly if it converges, so it needs

to start sufficiently close to the zero and we ened to be able to evaluate f ′, i.e. computable and f ′(s) ̸= 0.

Definition 3.6 (Secant Method). Start with two approximations xn−1 and xn to s. Find the zero of the

secant line joining the two previous points (xn−1, f(xn−1)), (xn, f(xn)). Similar to Newton’s method with a

slower convergence, but f ′ is not required to evaluate the derivative f ′.

Remark. Ideally, we would like the dependability of the bisection method and the speed of Newton. For

example, Regular Falsi (see text) is a bracketing method similar to the secant method. Often, one endpoint

converges quickly to a zero of f . Brent’s Method (also called the Brent-Dekker method) is a combination of

bisection, secant, and inverse quadratic interpolation that converges rapidly.

3.2 Fixed-Point Iteration

Remark. Many iterative methods, e.g. Newton’s method, can be viewed as xn+1 = g(xn) where g is some

particular function.

Definition 3.7. For a function g, a fixed point of g is a point x where g(x) = x.

Theorem 3.8. If xn+1 = g(xn) where g is continuous and xn converges to a number ζ in the domain of g,

then g(ζ) = ζ, i.e. ζ is a fixed point.

Theorem 3.9. Let g be a continuous function on a closed bounded interval I = [a, b], and suppose for all

x ∈ I, g(I) ∈ I, i.e. g maps I to itself. Then g has at least one fixed point in I.

Theorem 3.10 (Contraction Mapping Fixed-Point Theorem, Differentiable Functions). Suppose

g is differentiable on a closed, bounded interval I = [a, b], that g maps I to itself, and for some L < 1,

|g′(x)| ≤ L < 1 for all x ∈ I. Then the following are true:

(i) g has a unique fixed point in I; call it ζ,

(ii) for any x0 ∈ I, xn+1 = g(xn) generates a sequence such that xn → ζ,

(iii) if en = xn − ζ, then

|en| ≤
Ln

1− L
|x1 − x0|.

Corollary 3.11 (Local Convergence Theorem). Suppose g is continuously differentiable in an open
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interval I containing a fixed point ζ, and suppose |g′(ζ)| < 1. Then there exists an ϵ > 0, so that when

|x0 − ζ| ≤ ϵ, the fixed-point iteration xn+1 = g(xn) yields a sequence xn with xn → ζ.

Definition 3.12. Let x0, x1, x2, . . . be a sequence which converges to a number ζ. Let en = xn − ζ. If there

is a number p ≥ 1 and a constant C ̸= 0 for which

lim
n→∞

|en+1|
|en|p

= C

then p is called the order of convergence of the sequence and C is called the asymptotic error constant.

Definition 3.13. For specific values of p and C we assign specific names to the order of convergence:

(i) if p = 1 and C = 1, convergence is called sub-linear ;

(ii) if p = 1 and 0 < C < 1, convergence is called linear ;

(iii) if limn→∞ |en+1|/|en| = 0, convergence is called super-linear ;

(iv) if p = 2, convergence is called quadratic.

Definition 3.14. A function f ∈ Ck on an interval [a, b] where k is a non-negative integer when f, f ′, f ′′, . . . , f (k)

are all defined and continuous on [a, b]. In the case of k = 0, f is continuous. In the case of k = 1, f is

continuously differentiable.

Theorem 3.15 (Taylor’s Theorem with Remainder). If f ∈ Ck+1 then for each x, there exists a ζ

between a and x for which

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (k)(a)

k!
(x− a)k +

f (k+1)(ζ)

(k + 1)!
(x− a)k+1.

Theorem 3.16. Suppose g ∈ Ck+1, g(s) = s, xn is generated by xn+1 = g(xn) and xn → s, and g′(s) =

g′′(s) = · · · = g(k)(s) = 0 and g(k+1)(s) ̸= 0. Then xn → s to order k + 1 with an asymptotic error constant

of |g(k+1)(s)|/(k + 1)!.

Theorem 3.17. Suppose f ∈ C3, f(s) = 0, f ′(s) ̸= 0, and xn is generated by Newton’s method xn+1 =

xn − f(xn)/f
′(xn). Then

(i) if xn → s, convergence is at least quadratic,

(ii) if x0 is close enough to s, then xn → s.

4 Approximation Theory and Interpolation

4.1 Polynomials

Definition 4.1. A (real) polynomial is a function p : R → R of the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

If an ̸= 0, we define the degree of p(x) to be n. If p(x) = 0, deg(p) = −∞.

Lemma 4.2. Let p(x) and q(x) be polynomials. Then p(x)q(x) is also a polynomial and

deg(pq) = deg(p) + deg(q).
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Theorem 4.3 (Euclidean Algorithm). Suppose p(x) and d(x) are polynomials of degree at least 0. Then

there exist polynomials q(x) and r(x) such that

p(x) = q(x)d(x) + r(x)

where deg(r) < deg(d). The polynomials q(x), d(x), and r(x) are called the quotient, divisor, and remainder.

Corollary 4.4. If deg(p) ≥ 1 and p(x1) = 0, then there exists a polynomial q(x) such that p(x) = q(x)(x−x1)
where deg(q) = deg(p)− 1.

Definition 4.5. A number x1 is called a zero of p with multiplicity m if

p(x1) = p′(x1) = · · · = p(m−1)(x1) = 0 ̸= p(m)(x1).

Theorem 4.6. If x1 is a zero of multiplicity m, then there exists a polynomial q(x) such that p(x) =

q(x)(x− x1)
m and q(x1) ̸= 0.

Corollary 4.7. If x1, . . . , xk are zeros of p with multiplicities m1, · · · ,mk, then there exists a polynomial

q(x) such that

p(x) = q(x)(x− x1)
m1(x− x2)

m2 · · · (x− xk)
mk .

Corollary 4.8. If p(x) is a polynomial of degree less than or equal to n and p(x) has at least n+ 1 zeroes

(counting multiplicites), then p = 0.

Theorem 4.9. Given a real polynomial p(x) with degree n ≥ 1, there exists at least one value r (possibly

complex) such that p(r) = 0.

Theorem 4.10 (Fundamental Theorem of Algebra). Given a real polynomial p(x) with degree n ≥ 1,

p(x) can be written as

p(x) = a0(x− r1)(x− r2) · · · (x− rn)

where r1, . . . , rn are the zeros of p(x). Moreover, the set of zeros is unique.

Definition 4.11 (Synthetic Division). Let p(x) be a polynomial given by

p(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an

where an ̸= 0, and let α be constant. If we let b0 = a0 and generate {bj}nj=1 by

bj = αbj−1 + aj , 1 ≤ j ≤ n,

then p(α) = bn.

4.2 Interpolation by Polynomials

Definition 4.12. Given a set of points (x0, y0), (x1, y1), . . ., the method of interpolation involves finding a

function p(x) for which p(xi) = yi. The function p(x) is called an interpolant. Often yi = f(xi) for some

unknown function f(x), so we say that the interpolant is used as an approximation to f .

Lemma 4.13. If f(x) is a function such that f(xi) = yi, 0 ≤ i ≤ n, then it has in Pn an interpolating

polynomial of the form

p(x) =

n∑
j=0

f(xj)ℓj(x)
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where ℓj(x) is

ℓj(x) =

n∏
i=0,i̸=j

x− xi
xj − xi

.

The form of p(x) above is called the Lagrange form of p(x).

Lemma 4.14. If f(x) is a function such that f(xi) = yi, 0 ≤ i ≤ n, then has in Pn an interpolating

polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

whose cofficients aj can be computed by solving
1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

1 xn x2n · · · xnn



a0
a1
...

an

 =


y0
y1
...

yn

 .
or V a = y where V is called a Vandermonde matrix.

Theorem 4.15 (Polynomial Interpolation). If x0, x1, . . . , xn are distinct, then for arbitrary real y0, y1, . . . , yn,

there exists a unique polynomial p(x) of degree less than or equal to n such that p(xi) = yi.

Definition 4.16. Suppose x0, x1, . . . , xk are distinct and f(x0), f(x1), . . . , f(xk) are given. Define the k-th

divided difference f [x0, x1, . . . , xk] to be the coefficient of xk in the unique polynomial pk(x) of degree less

than or equal to k which interpolates f at x0, x1, . . . , xk.

Theorem 4.17. For k ≥ 1, we have a recursive formula for k-th divided difference

f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
.

4.3 Approximation Theory

Definition 4.18 (Approximation Theory). Suppose f(x) is a function defined on [a, b] that we wish to

approximate (perhaps f is unknown or it method of computation is exhaustive). We would prefer finding a

function g(x) so that g(x) ≈ f(x) (based on some measure of closeness) such that g(x) is easy to compute

(at least for x ∈ [a, b]).

Definition 4.19. Given functions f and g that are continuous and real-valued on some closed finite interval

[a, b], we can define function norms to measure “closeness” between these two functions. Common norms

include extension of the ℓp vector norms:

||f − g||1 =

∫ b

a

|f(x)− p(x)|w(x) dx,

||f − g||2 =

(∫ b

a

(f(x)− p(x))2w(x) dx

)1/2

,

||f − g||∞ = max
a≤x≤b

|f(x)− g(x)|.

For the 1- and 2-norm, we can define a weighting function w(x) that provides some flexibility in measuring

closeness. The weighting function must be continuous and nonnegative on (a, b). It is common to let w(x) = 1

so that no region on [a, b] is weighted more than the other.

20



Remark. In the case of functions, || · ||1, || · ||2, and || · ||∞ are norms on the ∞-dimensional vector space

C[a, b] (the set of continuous real-valued functions on [a, b]).

Remark. Typical application of approximation theory: given a continuous function f ∈ C[a, b] and some

finite dimensional subspace M of C[a, b] (e.g. M = Pn for some fixed n), find the closest function ĝ ∈M for

which ||f − ĝ|| ≤ ||f − g|| for all g ∈M in some norm on C[a, b]. Often, we would like to minimize ||f − g||∞
over all g ∈ Pn.

Theorem 4.20 (Weierstrass). Let f ∈ C[a, b]. For each ϵ > 0 there exists a polynomial p(x) of degree Nϵ

(Nϵ depends on ϵ) such that ||f − p||∞ < ϵ.

Theorem 4.21. Given f ∈ C[a, b] and given an integer n ≥ 0, there exists a unique polynomial p̂n ∈ Pn for

which ||f − p̂n||∞ ≤ ||f − pn||∞ for all pn ∈ Pn.

Definition 4.22. We call p̂ in Theorem 4.21, the best n-th degree uniform approximation to f(x) and call

En(f) = ||f − p̂n||∞ the degree of approximation to f(x).

Remark. Theorem 4.20 and Theorem 4.21 state that any continuous function on an interval [a, b] can be

approximated uniformly by a polynomial and for any fixed degree k, there exists a unique, closest polynomial

approximation to f .

4.4 Error of Polynomial Interpolation

Lemma 4.23. Suppose f has k continuous derivatives. Let x0, . . . , xk ∈ R be distinct. Then there exists

some ξ between min{x1, . . . , xk} and max{x1, . . . , xk} such that f [x0, . . . , xk] = f (k)(ξ)/k!.

Lemma 4.24. Suppose f has k continuous derivatives. Let x0, . . . , xk ∈ R be distinct and let x ̸= xi
(0 ≤ i ≤ n). If p is an approximation to f defined by

pn(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xn](x− x0) · · · (x− xn−1),

then

f(x) = pn(x) + f [x0, . . . , xn, x](x− x0) · · · (x− xn).

Theorem 4.25. Suppose f ∈ Cn+1[a, b] and x0, . . . , xn ∈ R are distinct in [a, b]. If p is an approximation

to f defined by

pn(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xn](x− x0) · · · (x− xn−1),

then for each x ∈ [a, b], there exists a ξ ∈ [a, b] such that

f(x) = pn(x) + f (n+1)(ξ)/(n+ 1)!(x− x0) · · · (x− xn).

Corollary 4.26. If f(x) = p(x) + f (n+1)(ξ)/(n+ 1)!(x− x0) · · · (x− xn), then

|f(t)− pn(t)| ≤
Mn+1

(n+ 1)!
|W (t)|

where Mn+1 = maxx∈[a,b] |f (n+1)(x) and W (t) = (t− x0) · · · (t− xn).
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4.5 Taylor Polynomials

Definition 4.27. Suppose f(x) ∈ Cn+1[a, b], that is, f(x) and its first n + 1 derivatives are continuous on

[a, b] and uppose for some c ∈ [a, b] we know the values f(c), f ′(c), . . . , f (n)(c). Then we can approximate f

on [a, b] by an n-th degree Taylor polynomial centered at c:

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n.

Definition 4.28. Under the assumptions on f above, Taylor’s Theorem with remainder states that for any

x ∈ [a, b], there exists a ξ between x and c such that

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n +

f (n+1)(ξ)

(n+ 1)!
(x− c)n+1.

Subtracting by pn(x) above, we get the error equation for the Taylor polynomial pn:

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− c)n+1.

Using the infinity-norm we can get a maximum value of the error equation,

||f − pn||∞ = max
a≤x≤b

|f(x)− pn(x)|.

If we let Mn+1 = maxa≤x≤b |f (n+1)(x)|, then for any x ∈ [a, b],

|f(x)− pn(x)| ≤
Mn+1

(n+ 1)!
|(x− c)n+1|.

This is called a pointwise upper bound for the error function f(x) − pn(x). To get an upper bound for

||f − pn||∞, let d = max(c− a, b− c), that is, d is the largest distance |x− c| from a point x ∈ [a, b] to c, so

||f − pn||∞ = max
a≤x≤b

|f(x)− pn(x)| ≤
Mn+1d

n+1

(n+ 1)!
.

4.6 Chebyshev Polynomials

Definition 4.29 (Chebyshev Polynomials of the First Kind). For k = 0, 1, 2, . . . define Tk(x) =

cos(k cos−1 x) for −1 ≤ x ≤ 1 (using the principal branch of cos−1 x). Then T0(x) = cos 0 = 1, T1(x) =

cos(cos−1 x) = x, and so on. These polynomials are called Chebyshev polynomials of the first kind. They

can be computed by a recursion formula:

Tk+1(x) = 2xTk(x)− Tk−1(x).

Clearly Tk(x) has degree k for k ≥ 0, so by induction on the recusion formula, the coefficient of xk in Tk(x)

is 2k−1 for k ≥ 1. Because cosine of odd multiples is π/2, we can find (for k ≥ 1), k distinct zeros of Tk(x)

in the interval (−1, 1), and by the Fundamental Theorem of Algebra,

Tk(x) = 2k−1(x− x0)(x− x1) · · · (x− xk−1).

Lemma 4.30. On the interval −1 ≤ x ≤ 1, |Tk(x)| ≤ 1.

Lemma 4.31. For a fixed k ≥ 1, let yj = cos(jπ/k) for j = 0, 1, . . . , k. Then 1 = y0 > y1 > · · · > yk = −1

and

Tk(yj) = cos(k(jπ/k)) = cos(jπ) = (−1)j .

Then there are k+1 points where |Tk(x)| takes on its maximum and the sign of Tk alternates at these k+1

points. These points are called the Chebyshev nodes.
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Theorem 4.32. LetW (x) = (x−x0) · · · (x−xn) be the function described in Corollary 4.26, fixing the inter-

val [a, b] to be [−1, 1]. Then the set of points x0, . . . , xn ∈ [−1, 1] that minimizes ||W ||∞ = max−1≤x≤1 |W (x)|
are the zeroes of Tn+1(x):

xj = cos

(
j + 1/2

n+ 1
π

)
, j = 0, 1, . . . , n.

Then W (x) = Tn+1(x)/2
n and ||W ||∞ = 1/2n.

Corollary 4.33. If f ∈ Cn+1[−1, 1] and we interpolate f at the Chebyshev nodes (the zeroes of Tn+1), then

||f − pn||∞ ≤ Mn+1

(n+ 1)!
||W ||∞ ≤ Mn+1

2n(n+ 1)!
.

Corollary 4.34. Let f ∈ Cn+1[a, b] and let t be a variable in [−1, 1], and let x be a variable in [a, b] related

by

x =
b− a

2
t+

a+ b

2
, t = 2

x− a

b− a
− 1.

Define a shifted Chebyshev polynomial T̂k(x) on [a, b] by

T̂k(x) = Tk(t) = Tk

(
2 · x− a

b− a
− 1

)
.

For k ≥ 1, the coefficient of xk in T̂k(x) is 2
k−1(2/(b− a))k, and the Chebyshev nodes for T̂n+1 are

xj =
b− a

2
cos

(
j + 1/2

n+ 1
π

)
+
a+ b

2
, j = 0, 1, . . . , n.

Then

W (x) =
1

2n

(
b− a

2

)n+1

T̂n+1(x),

so

||W ||∞ = max
a≤x≤b

|W (x)| = 1

2n

(
b− a

2

)n+1

.

If a polynomial pn(x) of degree n interpolates f at the Chebyshev nodes x0, . . . , xn, then

||f − pn||∞ ≤ Mn+1

(n+ 1)!

1

2n

(
b− a

2

)n+1

where Mn+1 = ||f (n+1)||∞.

4.7 Equal-Spaced and Osculatory Interpolation

Definition 4.35 (Equal-Spaced Interpolation). Suppose f(x) is defined on [a, b] and n is a positive

integer. Let h = (b − a)/n and xi = a + ih where i = 0, 1, . . . , n. Then x0 = a, x1 = a + h, . . . , x2 =

a+ 2h, · · · , xn = a+ nh = b are equally spaced. For fixed h, define ∆f(x) = f(x+ h)− f(x) which we call

the forward difference of f . Define ∆2f(x) = (∆(∆f))(x) = f(x+2h)−2f(x+h)+f(x). Recursively define

∆kf(x) = (∆(∆k−1f))(x) = ∆k−1f(x+ h)−∆k−1f(x).

By induction, we can write ∆kf(x) as

∆kf(x) =

k∑
j=0

(
k

j

)
(−1)k−jf(x+ jh).

By induction it can be shown that

f [xi, xi+1, . . . , xi+k] =
∆kf(xi)

k!hk
.
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Remark. Often, a forward difference table is used instead of a divided difference table to interpolate f .

Definition 4.36. Let x0, x1, . . . , xn be not necessarily distinct points in [a, b]. To say that a polynomial

p(x) interpolates f at x0, . . . , xn means for each distinct number α in x0, . . . , xn, let kα be the number of

times α appears in the list, then

p(j)(α) = f (j)(α) for j = 0, 1, . . . , kα−1

Theorem 4.37 (Osculatory Interpolation). Let x0, x1, . . . , xn be not necessarily distinct points in [a, b],

and suppose for each distinct α in the list, f (j)(α) is defined for j = 0, . . . , kα−1 (where kα is defined above).

Then there exists a unique polynomial pn(x) of degree d ≤ n which interpolates f at x0, . . . , xn.

Definition 4.38. The value f [x0, . . . , xk] is defined to be the coefficient of xk in the unique polynomial

pk(x) which interpolates f at x0, . . . , xk.

Theorem 4.39. Let p(x) be a polynomial that interpolates f at x0, . . . , xk. Then the following are true

(i) when x0 ̸= xk, the recursive formula still holds:

f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
,

(ii) if f ∈ Ck, then f [x0, . . . , xk] is a continuous function of the k + 1 variables x0, . . . , xk,

(iii) f [c, c, . . . , c] = f (k)(c)/k! for some c ∈ [a, b],

(iv) the formula for pn(x) still holds:

pn(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, . . . , xn](x− x0) · · · (x− xn−1),

(v) the error formula still holds: if f ∈ Cn+1[a, b], and x0, . . . , xn ∈ [a, b], then for each x ∈ [a, b], then

there exists ξ such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
W (x)

where W (x) = (x− x0) · · · (x− xn).

Definition 4.40 (Cubic Hermite Interpolation). Let f ∈ C1[a, b] be some function, α, β be distinct

points, and consider finding p3(x) which interpolates f and f ′ at α and β, i.e. p3 interpolates f at α, α, β, β.

Then the formula for p3(x) is given by

p3(x) = f [α] + f [α, α](x− α) + f [α, α, β](x− α)2 + f [α, α, β, β](x− α)2(x− β)

= f(α) + f ′(α)(x− α) + f [α, α, β](x− α)2 + f [α, α, β, β](x− α)2(x− β).

4.8 Piecewise Polynomial Interpolation and Approximation

Definition 4.41. A piecewise-polynomial function of order k on [a, b] with interior breakpoints at x1, . . . , xn−1

is a function of the form

S(x) =



S0(x), x ∈ [x0, x1),

S1(x), x ∈ [x1, x2),
...

Sn−1(x), x ∈ [xn−1, xn]
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where each Sj(x) is a polynomial of degree at most k, that is,

Sj(x) = c0j + c1jx+ · · ·+ ckjx
k.

For integers 0 ≤ m ≤ k, define PPm
k to be the set of all piecewise polynomial functions of order k which are

in Cm[a, b].

Lemma 4.42. If m ≥ k, then PPm
k = Pk.

Definition 4.43. The points x0, x1, . . . , xn (endpoints and interior breakpoints) are called knots. Elements

of PPk−1
k (here m = k − 1) are called splines of order k. Splines are the smoothest (most continuous

derivatives) piecewise polynomials which are not just single polynomial functions.

Theorem 4.44. Given S ∈ PPm
k , S is in Cm, if at each of the n− 1 interior breakpoints xj

S
(n)
j−1(xj) = S

(n)
j (xj) n = 0, 1, . . . ,m

for j = 1, . . . , n− 1.

Remark. The dimension of PPm
k tells us how many “free parameters” there are in S. To determine S, we

need a number of conditions equal to the number of free parameters; moreover, these conditions need to be

linearly independent.

Definition 4.45. For PPc
1, piecewise-linear interpolation involves solving S(xj) = f(xj) for 0 ≤ j ≤ n where

each point is connected by a line.

Remark. The following describes piecewise-linear interpolation. Fix j with 0 ≤ j ≤ n − 1. Then Sj(x) =

c0j + c1jx. Use the boundary conditions Sj(xj) = f(xj) and Sj+1(xj+1) = f(xj+1) to solve the for the

unknowns. In Newton’s form, Sj(x) = f(xj) + f [xj , xj+1](x− xj) where

c0j = f(xj)− xjf [xj , xj+1], c1j = f [xj , xj=1].

Theorem 4.46. Given that the conditions for piecewise-polynomial interpolation hold true, for piecewise-

linear interpolation, there exists a unique interpolant for arbitrary f .

Lemma 4.47. For piecewise-linear interpolation, if S is the interpolant to f then for xj ≤ x ≤ xj+1,

|f(x)− S(x)| = |f(x)− Sj(x)| ≤
||f ′′||∞

2
|(x− xj)(x− xj+1)|.

In general, along [x0, xn],

||f − S||∞ ≤ M2

8
h2.

where M2 = ||f ′′||∞.

Definition 4.48. For PP1
3, piecewise-cubic Hermite interpolation involves solving S(xj) = f(xj) and S

′(xj) =

f ′(xj) for 0 ≤ j ≤ n.

Remark. The following describes piecewise-cubic Hermite interpolation. Fix j with 0 ≤ j ≤ n−1. Then Sj(x)

is the polynomial of degree at most 3 which interpolates f at xj , xj , xj+1 and xj+1 using f(xj), f
′(xj),

f(xj+1), and f ′(xj+1). Use the boundary conditions Sj(xj) = f(xj), S
′
j+1(xj+1) = f ′(xj+1), Sj(xj) =

Sj+1(xj+1) = f(xj), and S
′
j+1(xj+1) = f ′(xj+1) to solve the for the unknowns.
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Theorem 4.49. Given that the conditions for piecewise-polynomial interpolation hold true, for piecewise-

cubic Hermite interpolation, there exists a unique interpolant for arbitrary f .

Lemma 4.50. For piecewise-cubic Hermite interpolation, if S is the interpolant to f then for xj ≤ x ≤ xj+1,

|f(x)− S(x)| = |f(x)− Sj(x)| ≤
||f (4)||∞

4!
|(x− xj)

2(x− xj+1)
2|.

In general, along [x0, xn],

||f − S||∞ ≤ M4

384
h4.

where M4 = ||f (4)||∞.

Definition 4.51. For PP2
3, natural cubic spline interpolation involves boundary conditions. If the function

f is interpolated on [a, b], then S′′(a) = 0, S′′(b) = 0 and S(xj) = f(xj) for 0 ≤ j ≤ n.

Remark. The following describes natural cubic spline interpolation. Let y′′0 , y
′′
1 , . . . , y

′′
n represent S′′(x0), S

′′(x1), . . . , S
′′(xn).

Let fj = f(xj) for 0 ≤ j ≤ n and ∆fj = fj+1 − fj and 0 ≤ j ≤ n− 1. For j = 0, . . . , n− 1, we will express

Sj in terms of fj , fj + 1 and y′′j , y
′′
j+1. Let hj = ∆xj = xj+1 − xj for 0 ≤ j ≤ n.

Fix j with 0 ≤ j ≤ n − 1 and use Sj(xj) = fj , S
′′
j (xj) = y′′j , Sj(xj+1) = Sj+1(xj+1) = fj+1, and

S′′
j (xj+1) = S′′

j+1(xj+1) = y′′j+1 to uniquely determine Sj . Each polynomial Sj(x) is given by

Sj(x) =
y′′j
6hj

(xj+1 − x)3 +
y′′j+1

6hj
(x− xj)

3 +

(
fj+1

hj
−
y′′j+1hj

6

)
(x− xj) +

(
fj
hj

−
y′′j hj

6

)
(xj+1 − x).

The piecwise polynomial function S(x) built from each Sj(x) is piecewise-cubic. To solve for the unknowns

y′′0 , y
′′
1 , . . . , y

′′
n, use the derivatives of Sj(x),

S′
j−1(x) = −

y′′j−1

2hj−1
(xj − x)2 +

y′′j
2hj−1

(x− xj−1)
2 +

(
fj
jj−1

−
y′′j hj−1

6

)
−
(
fj−1

hj−1
−
y′′j−1hj−1

6

)
S′
j(x) = −

y′′j
2hj

(xj+1 − x)2 +
y′′j+1

2hj
(x− xj)

2 +

(
fj+1

hj
−
y′′j+1hj

6

)
−
(
fj
hj

−
y′′j hj

6

)
Evaluating both at xj we get

hj−1y
′′
j−1 + 2(hj + hj−1)y

′′
j + hjy

′′
j+1 = bj

where bj = 6(∆fj/hj − ∆fj−1/hj−1) which holds for 1 ≤ j ≤ n − 1. The boundary conditions S′′(x0) =

S′′(xn) = 0 imples that y′′0 = y′′n = 0. Thus solving for y′′1 , . . . , y
′′
n−1 involves solving the linear system

γ1 h1 0 · · · 0 0

h1 γ2 h2 · · · 0 0

0 h2 γ3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · γn−2 hn−2

0 0 0 · · · hn−2 γn−1





y′′1
y′′2
y′′3
...

y′′n−2

y′′n−1


=



b1 − h0y
′′
0

b2
b3
...

bn−2

bn−1 − hn−1y
′′
n


=



b1
b2
b3
...

bn−2

bn−1


where γj = 2(hj + hj−1). Since γj > hj−1 + hj the matrix is diagonally dominant which implies that the

matrix is invertible. Moreover the system does not require interchanges to solve by Gaussian elimination.

Theorem 4.52. Given that the conditions for piecewise-polynomial interpolation hold true, for natural

cubic spline interpolation, there exists a unique interpolant for arbitrary f .
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Lemma 4.53. For natural cubic spline interpolation, if S is the interpolant to f then

||f − S||∞ ≤ C0||f ′′||∞h2

for some constant C0 that is independent of f and h where h = max0≤j≤n−1 ∆xj . Additionally,

||f ′ − S′||∞ ≤ C1||f ′′||∞h

for some constant C1. If f
′′(a) =′′ (b) = 0 and f ∈ C4[a, b], then

||f − S||∞ ≤ C2||f (4)||∞h4

and

||f ′ − S′′||∞ ≤ C3||f (4)||∞h3

for some constants C2, C3.

Definition 4.54. For PP2
3, complete cubic spline interpolation is similar to natural cubic spline interpolation,

except S′(a) = f ′(a) and S′(b) = f ′(b) are used as the boundary conditions.

Remark. Modifying the steps from natural cubic spline interpolation, set S′
0(x0) = f0 and S′

n−1(xn) = f ′n
which leads to 

2h0y
′′
0 + h0y

′′
1 = b0, where bc = 6

(
∆f0
h0

− f ′0

)
,

hn−1y
′
n−1 + 2hn−1y

′′
n = bn, where bn = 6

(
f ′n − ∆fn−1

hn−1

)
.

The new system is diagonally dominan, so the matrix is invertible.

Theorem 4.55. Given that the conditions for piecewise-polynomial interpolation hold true, for complexte

cubic spline interpolation, there exists a unique interpolant for arbitrary f .

Lemma 4.56. For complete cubic spline interpolation, if S is the interpolant to f and f ∈ C4[a, b] then

||f − S||∞ ≤ 5

384
||f (4)||∞h4

where h = max0≤j≤n−1 ∆xj . Additionally,

||f ′ − S′||∞ ≤ 1

24
||f (4)||∞h3.

Definition 4.57. For PP2
3, “not a knot” cubic spline interpolation is similar to natural cubic spline interpo-

lation, except S′′′
0 (x1) = S′′′

1 (x1) and S
′′′
n−2(xn−1) = S′′′

n−1(xn−1) are used as the boundary conditions. The

error bound is similar to that for complete cubic spline interpolation.

Theorem 4.58. Among the class of all functions g(x) ∈ C2[a, b] which interpolates f at x0, x1, . . . , xn, the

unique one which minimizes
∫ b

a
(g′′(x))2 dx is the natural cubic spline S(x).

Theorem 4.59. Among the class of all functions g(x) ∈ C2[a, b] which interpolates f at x0, x0, x1, x1, . . . , xn−1, xn−1, xn, xn,

the unique one which minimizes
∫ b

a
(g′′(x))2 dx is the complete cubic spline S(x).
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5 Numerical Integration

5.1 Overview

Definition 5.1. The following describes numerical integration. Suppose f ∈ C[a, b] and we know f(x0), · · · , f(xn)
for some points x0, . . . , xn ∈ [a, b] where a ≤ x0 < x1 < . . . < xn ≤ b. Certain choices of points xj can lead

to very accurate approximations to
∫ b

a
f(x) dx. If g(x) is an approximation to f(x) on [a, b], we can consider∫ b

a
g(x) dx as an approximation to

∫ b

a
f(x) dx. Often g(x) is a polynomial interpolant of f(x).

Definition 5.2. If the interval [a, b] is known and fixed, let I(f) =
∫ b

a
f(x) dx. Then I is a function whose

domain is C[a, b], a set consisting itself of function. We call I an operator or a mapping. The domain of I

is C[a, b] and the range of I is R.

Definition 5.3. Any formula which approximates I(f) using values of f is called a numerical integration

formula (or a quadrature formula). Any quadrature formula can also be thought of as a mapping Q(f) which

assigns to each function f ∈ C[a, b] a real number Q(f). Quadrature formulas obtained by an interpolating

polynomial are called interpolatory quadrature.

Definition 5.4. Let a ≤ x0 < x1 < · · · < xn ≤ b be all fixed, and let Qn(f) be the interpolatory quadrature

given by Qn(f) = I(pn) where pn(x) is the unique polynomial of degree d ≤ n which interpolates f at

x0, . . . , xn. If we write pn(x) in Lagrange form, we obtain

Qn(f) = I(pn) =

∫ b

a

pn(x) dx =

∫ b

a

n∑
j=0

f(xj)ℓj(x) dx =

n∑
j=0

(∫ b

a

ℓj(x) dx

)
f(xj) =

n∑
j=0

Ajf(xj).

where Aj =
∫ b

a
ℓj(x) dx. We call the Aj ’s the weights and the xj ’s the nodes.

Definition 5.5. Let Q be some quadature formula on [a, b]. If for some integer k ≥ 0, Q(p) = I(p) for all

p ∈ Pk (i.e. for all polynomials of degree d ≤ k). Then we say Q has precision (at least) k.

Theorem 5.6. Every (n+ 1)-point interpolatory quadrature has precision at least n.

Theorem 5.7. Let Qn be the (n+1)-point interpolatory quadrature on [a, b] with nodes x0, x1, . . . , xn. For

k = 0, 1, . . . , n, let fk(x) = xk. Since Qn has precision at least n, Qn(fk) = I(fk) for k = 0, 1, . . . , n. Then

we have a linear system where A0, A1, . . . , An are the unknowns:

n∑
j=0

xkjAj =

∫ b

a

xk dx, 0 ≤ k ≤ n.

The matrix in this system is a Vandermonde matrix, so the system can be solved.

Definition 5.8. The closed Newton-Cotes Formulas are obtained using interpolatory quadrature with equally

spaced nodes x0, x1, . . . , xn with x0 = a and xn = b where

xj = a+ jh, j = 0, 1, . . . , n, h =
b− a

n
.

The open Newton-Cotes Formulas are obtained using interpolatory quadrature with equally spaced nodes

y1, y2, . . . , yn+1 with a < y1 and yn+1 < b where

xj = a+ jh, j = 1, 2, . . . , n+ 1, h =
b− a

n+ 2
.
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Remark. Some Newton-Cotes Formulas on [−1, 1]:

Closed n xj Aj Formula

Trapezoid Rule 1 x0 = −1, x1 = 1 A0 = 1, A1 = 1 Q1(f) = f(−1) + f(1)

Simpson’s Rule 2 x0 = −1, x1 = 0, x2 = 1 A0 = 1
3 , A1 = 4

3 , A2 = 1
3 Q2(f) =

1
3f(−1) + 4

3f(0) +
1
3f(1)

3 x0 = −1, x1 = − 1
3 , A0 = 1

4 , A1 = 3
4 , Q3(f) =

1
4f(−1) + 3

4f(−1/3)

x2 = 1
3 , x3 = 1 A2 = 3

4 , A3 = 1
4 + 3

4f(1/3) +
1
4f(1)

Open n xj Aj Formula

Midpoint Rule 0 y1 = 0 A1 = 2 Q1(f) = 2f(0)

1 y1 = − 1
3 , y2 = 1

3 A1 = 1, A2 = 1 Q1(f) = f(−1/3) + f(1/3)

2 y1 = − 1
2 , y2 = 0, y3 = 1

2 A1 = 4
3 , A2 = − 2

3 , A3 = 4
3 Q2(f) =

4
3f(−1/2)− 2

3f(0) +
4
3f(1/2)

Each of these formulas can be transformed to a formula on an arbitrary interval [a, b]. Using t ∈ [−1, 1]

as the variable on [−1, 1] and x ∈ [a, b] on [a, b], let x = αt+β where α = (b− a)/2 and β = (b+ a)/2. Then

we have

xj =
b− a

2
tj +

a+ b

2
and yj =

b− a

2
uj +

a+ b

2
.

Additionally, the Aj ’s get multiplied by a factor of α since∫ b

a

f(x) dx =

∫ −1

−1

αf(αt+ β) dt.

For example,

Trapezoid Rule T (f) =
b− a

2
(f(a) + f(b)),

Simpson’s Rule S(f) =
b− a

2

[
1

3
f(a) +

4

3
f

(
a+ b

2

)
+

1

3
f(b)

]
,

Midpoint Rule M(f) =
b− a

2

[
2f

(
a+ b

2

)]
.

Remark. We can also apply different rules within a given interval [a, b]. Partition [a, b] into N subintervals

a = x0 < x1 < · · · < xN = b, and one of these rules is applied in each subinterval [xj , xj+1] for j = 0, · · ·N−1.

Then

Trapezoid Rule T xj+1
xj

(f) =
hj
2
(f(xj) + f(xj+1)),

Simpson’s Rule Sxj+1
xj

(f) =
hj
2

[
1

3
f(xj) +

4

3
f

(
xj + xj+1

2

)
+

1

3
f(xj+1)

]
,

Midpoint Rule Mxj+1
xj

(f) =
hj
2

[
2f

(
xj + xj+1

2

)]
where hj = xj+1 − xj .

Theorem 5.9. Let Qn be the (n+1)-point interpolating quadrature on [a, b] with nodes x0, x1, . . . , xn. Let

f ∈ Cn+1[a, b] and let en(f) = I(f) − Qn(f), the error in Qn(f). Since for each x ∈ [a, b] there is a ξ for

which

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!
W (x)

where W (x) = (x− x0) · · · (x− xn). Then

en(f) = I(f)− I(pn) =

∫ b

a

f(x)− pn(x) dx =

∫ b

a

f (n+1)(ξ)

(n+ 1)!
W (x) dx
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and thus

|en(f)| ≤
Mn+1

(n+ 1)!

∫ b

a

|W (x)| dx

where Mn+1 = maxa≤x≤b |f (n+1)(x)|.

Remark. More useful forms for en(f) can be derived for many quadrature formulas. For the Trapezoid Rule

T (f) = (b− a)(f(a)− f(b))/2, then

eT (f) = I(f)− T (f) = −f
′′(η)

12
(b− a)3

for some η ∈ [a, b].

Definition 5.10. The method of composite numerical integration involves subdividing an interval [a, b] into

N subintervals by choosing x0, . . . , xN with a = x0 < · · · < xN = b, and applying a quadrature formula in

each subinterval [xj , xj+1] for j = 0, . . . , N − 1.

Remark. Examples:

Composite Trapezoid Rule TN (f) =

N−1∑
j=0

T xj+1
xj

(f) =

N−1∑
j=0

hj
2
(f(xj) + f(xj+1)),

Composite Simpson’s Rule SN (f) =

N−1∑
j=0

Sxj+1
xj

(f) =

N−1∑
j=0

hj
6

[
f(xj) + 4

(
xj + xj+1

2

)
+ f(xj+1)

]
.

with hj = xj+1 − xj . With equally spaced points with h = (b− a)/N , xj = a+ jh, 0 ≤ j ≤ N , then

TN (f) =

N−1∑
j=0

hj
2
(f(xj) + f(xj+1)) =

h

2
(f(x0) + f(xN )) + h

N−1∑
j=1

f(xj),

SN (f) =

N−1∑
j=0

hj
6

[
f(xj) + 4

(
xj + xj+1

2

)
+ f(xj+1)

]
=

N−1∑
j=0

h

6

(f(x0) + f(xN )) + 2

N−1∑
j=1

f(xj) + 4

N−1∑
j=0

f

(
xj + xj+1

2

) .
Theorem 5.11. Let f ∈ C2[a, b] and consider the composite quadrature obtained via the composite Trape-

zoid Rule with equally spaced points. Then the error eTN (f) = I(f)− TN (f) is

eTN (f) =

N−1∑
j=0

(
Ixj+1
xj

(f)− T xj+1
xj

(f)
)
=

N−1∑
j=0

(
−f

′′(ηj)

12
h3
)

for each η ∈ [xj , xj+1]. By the Intermediate Value Theorem, it can be shown that

h

N−1∑
j=0

f ′′(ηj) = (b− a)f ′′(η)

for some η ∈ [a, b] and thus

eTN (f) = −f
′′(η)(b− a)h2

12
.

Definition 5.12. Suppose we have approximations A(h) (one for each h > 0 in some sequence of h’s tending

to 0) to an unknown quantity, and suppose

a0 = A(h) + akh
k + Ck(h)h

k+1
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where k is a known positive integer, ak is an unknown constant, and Ck(h) is an unknown bounded function

of h. Let r be some constant with 0 < r < 1 (usually we take r = 1/2). Then

a0 = A(rh) + ak(rh)
k + Ck(rh)(rh)

k+1.

Combining the two equations,

a0 =
rkA(h)−A(rh)

rk − 1
+ C̃k(h)h

k+1

where C̃k(h) = rk/(rk − 1)(Ck(r)− rCk(rh)) is another unknown bounded function of h. The error in A(h)

is O(hk) but the error in
A(rh)− rkA(h)

1− rk

is O(hk+1). This method is called Richardson Extrapolation.

Definition 5.13. Suppose we know more about the form of the error in A(h), the better approximation we

can get. Suppose we know that

a0 = A(h) + a1h
k1 + a2h

k2 + · · ·+ amh
km + Cm(h)hkm+1

where k1 < k2 < · · · < km+1 are known, a1, . . . , am are unknown, and Cm(h) is unknown and bounded. Let

A0(h) = A(h). Its leading error term is O(hk1). Apply Richardson extrapolation to get

A1(h) =
A0(rh)− rk1A0(h)

1− rk1
./

Its leading error term is then O(hk2). Apply Richardson extrapolation again to get

A2(h) =
A1(rh)− rk2A1(h)

1− rk2
.

Its leading error term is then O(hk3). Repeating this method, we get Am(h) with error O(hkm+1). This

method is called Repeated Richardson extrapolation.

Definition 5.14. Romberg Integration is the application of repeated Richardson Extrapolation to the Trape-

zoid Rule. It can be shown that if f ∈ Cν [a, b], and we apply the Composite Trapezoid Rule to f with equally

spaced points, then

I(f) = TN (f) + c2h
2 + c4h

4 + · · ·+ Cν(h)h
ν

where h = (b− a)/N , c2, c4, . . . are unknown constants, and Cν(h) is bounded and unknown. The constants

can be computed by

c2 = − 1

12

∫ b

a

f ′′(x) dx

c4 =
1

720

∫ b

a

f (4)(x) dx

...

Use r = 1/2 and define for m = 0, 1, 2, . . . T0,m = T2m(f), i.e. split [a, b] into N = 2m equal subintervals, so

h = (b−a)/2m. Fixm and let h = (b−a)/2m be fixed too. Then T0,m is the value of the composite Trapezoid

Rule approximation where the subintervals have length h and T0,m+1 is the value when the subintervals have

length (b− a)/2m+1 = h/2. Applying Richardson Extrapolation, define

T1,m =
T0,m+1 − 1

4T0,m

1− 1
4

.
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The error in T0,m is O(h2); the error in T1,m is O(h4). Repeated Richardson extrapolation leads to

Ti,m =
Ti−1,m+1 −

(
1
4

)i
Ti−1,m

1−
(
1
4

)i
for i = 1, 2, . . ..

Theorem 5.15. The function T1,m in Romberg Integration is SN (f), the composite Simpson’s Rule with

N = 2m and h = (b− a)/2m.

6 Eigenvalues and Eigenvectors

6.1 Review of Eigenvalues and Eigenvectors

Definition 6.1. Let A be an n × n matrix. A (complex) number λ is an eigenvalue of A if there exists a

vector x ̸= 0 such that Ax = λx such that Ax = λx. The vector x is called an eigenvector of A associated

with the eigenvalue λ.

Theorem 6.2. Let A be an n× n matrix. The following are equivalent:

(i) λ is an eigenvalue of A;

(ii) λI −A is not invertible;

(iii) det(λI −A) = 0.

Definition 6.3. From (iii) above, the expression p(λ) = det(λI −A) is a polynomial of degree n in λ and it

has a leading coefficient of 1. We call p(λ) the characteristic polynomial of A. The eigenvalues of A are the

zeros of p(λ): λ1, λ2, . . . , λn.

Definition 6.4. Two n × n matrices A and C are called similar if there exists an invertible matrix S for

which C = S−1AS (Note: A = SCS−1).

Theorem 6.5. Similar matrices have the same characteristic polynomial, and hence have the same eigen-

values; their eigenvectors transform using the transition matrix S.

Definition 6.6. The matrix A is said to have a complete set of eigenvectors if there exists a basis of Rn (or

Cn) consisting of eigenvectors of A. The matrix A is said to be diagonalizable if A is similar to a diagonal

matrix, i.e. if there exists an invertible matrix S and a diagonal matrix Λ for which S−1AS = Λ.

Theorem 6.7. An n× n matrix A is diagonalizable if and only if A has a complete set of eigenvectors.

Definition 6.8. The algebraic multiplicity of an eigenvalue λ of A is the number of times it appears as a zero

of the characteristic polynomial pA(λ). The geometric multiplicity of an eigenvalue λ of A is dim(Col(λI−A)),
i.e. the largest number of linearly independent eigenvectors associated with λ.

Theorem 6.9. For any eigenvalue λ of A, the geometric multiplicity of λ is less than or equal to the algebraic

multiplicity of λ.

Theorem 6.10. An n×n matrix A is diagonalizable if and only if for every eigenvalue λ of A, the geometric

multiplicity of λ is exactly the algebraic multiplicity of A.
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6.2 Power Method

Definition 6.11. Suppose A ∈ Rn×n, and suppose that A had n linearly independent real eigenvectors

u1, . . . ,un corresponding to real eigenvalues λ1, . . . , λn, and in addition, that |λ1| > |λ2| ≥ . . . ≥ |λn|. The

eigenvalue λ1 is called the dominant eigenvalue of A.

Definition 6.12. Let B = [u1, . . . ,un] be the n× n matrix whose columns are the eigenvectors u1, . . . ,un.

The basic power method involves starting with an initial nonzero vector x0, and for k = 0, 1, . . ., setting

xk+1 = Axk. By induction, xk = Akx0.

Remark. Computationally, we never actually compute Ak in the basic power method for k ≥ 2. Computing

A(A(. . . (Ax0))) requires k matrix-vector multiplies while (A · · ·A · · ·A)x0 requires (k − 1)n+ 1.

Remark. Since u1, . . . ,un are linearly independent, they form a basis of Rn, so the initial vector is a linear

combination of u1, . . . ,un, say

x0 = α1u1 + α2u2 + · · ·+ αnun.

Since Auj = λjuj , we have

x1 = Ax0 = α1λ1u1 + α2λ2u2 + · · ·+ αnλnun,

x2 = Ax1 = α1λ
2
1u1 + α2λ

2
2u2 + · · ·+ αnλ

2
nun,

...

xk = Axk = α1λ
k
1u1 + α2λ

k
2u2 + · · ·+ αnλ

k
nun

= λk1(α1u1 + α2(λ2/λk)
ku2 + · · ·+ αn(λn/λk)

kun).

Since |λ1| > |λj |, as k → ∞, xk → λk1α1u1. More precisely, xk/λ
k
1 → α1u1 as k → ∞.

Remark. Given xk and xk+1 = Ak, how is λ1 estimated? Typically, we take inner products with a vector

vk. Let

βk+1 =
v⊤
k xk+1

v⊤
k xk

where vk is chosen to be either

(i) xk itself;

(ii) the standard basis vector er where r is the index of the largest component of xk; or

(iii) some fixed vector v.

Case (i) is used most commonly. Case (iii) is easiest to analyze.

If |λi| > 1, then |λki | → ∞, and if |λi| < 1, then |λki | → 0, so this method is likely to overflow or underflow.

Definition 6.13. The scaled power method is similar to the basic power method except we choose a vector

x0 for which x⊤
0 x0 = 1. For k = 0, 1, 2, . . ., we set

yk+1 = Axk,

βk+1 = x⊤
k yk+1,

nk+1 =
√
y⊤
k+1yk+1,

so then xk+1 = yk+1/nk+1.
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Lemma 6.14. Given an eigenvector x ̸= 0, the “best estimate” for the corresponding eigenvalue could be

chosen to be the value of α that minimizes ||Ax−αx||22. The value of α that minimizes g(α) = ||Ax−αx||22
is α = x⊤Ax/x⊤x.

Definition 6.15. For x ̸= 0, µA(x) = x⊤Ax/x⊤x is called the Rayleigh Quotient of x for the matrix A.

Note that βk+1 above is βk+1 = µA(x).

Theorem 6.16 (Spectral Mapping Theorem, special case). Suppose A has eigenvalues λ1, . . . , λn
with corresponding eigenvectors u1, . . . ,un. Then the eigenvalues of A − αI are λ1 − α, . . . , λn − α with

the eigenvectors u1, . . . ,un. If for all 1 ≤ j ≤ n, α ̸= λj , then the eigenvalues of (A − αI)−1 are 1/(λ1 −
α1), . . . , 1/(λn − α) with the same eigenvectors.

Definition 6.17. The inverse power method is similar to the scaled power method: Start with an α (usually

close to an eigenvalue) and x0 with x⊤
0 x0 = 1. Then for k = 0, 1, 2, . . ., we solve

(A− αI)yk+1 = xk

to get yk+1 and compute

βk+1 = x⊤
k yk+1,

nk+1 =
√
y⊤
k+1yk+1,

xk+1 = yk+1/nk+1.

Remark. A few remarks on the inverse power method:

(i) Analyticially, yk+1 = (A− αI)−1xk, so this just the power method for (A− αI)−1, hence “inverse”.

(ii) If α stays the same, we only need a PLU factorization of A− αI once.

(iii) If λ1, . . . , λn are the eigenvalues of A, then 1/(λ1−α), . . . , 1/(λn−α) are the evaluations of (A−αI)−1.

(iv) The dominant eigenvalue of (A− αI)−1 is 1/(λj − α) where λj is the closest eigenvalue of A to α.

(v) If λi is the second closest eigenvalue of A to α, then βk+1 → 1/(λj −α) with asymptotic error constant

|λj − α|/|λi − α|.
(vi) The closer α is to λj , the faster the rate of convergence. Howerver, when α is too close to λj , then

(A− αI) can be poorly conditioned, but these errors tend to be in the direction of uj .

(vii) If βk+1 → 1/(λj − α), then 1/βk+1 + α→ λj .

Definition 6.18. The Rayleigh Quotient Iteration is similar to the inverse power method, except we adjust

α each time to accelerate the rate of convergence. Start with x0 with x⊤
0 x0 = 1. Then for k = 0, 1, 2, . . ., we

let

αk = x⊤
k Axk

and solve

(A− αkI)yk+1 = xk

to get yk+1 and compute

βk+1 = x⊤
k yk+1,

nk+1 =
√
y⊤
k+1yk+1,

xk+1 = yk+1/nk+1.

Remark. A few remarks on the inverse power method:
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(i) Since x⊤
k xk = 1, αk = µA(xk) is the Rayleigh Quotient.

(ii) We do not form (A− αkI)
−1

(iii) Each iteration requires 2/3n3 operations

(iv) It is prefereable to do several iterations of the power method or inverse method with fixed α to get

close to an eigenvalue before switching to Rayleigh Quotient iteration.

(v) RQI converges cubically.

Definition 6.19. The deflation method allows us to compute additional eigenvalue/eigenvector pair. Sup-

pose we have found an eigenvalue λ and a normalized eigenvector u. Let S be any intevertible n× n matrix

whose first column is u. Then B = S−1AS is similar to A, so it has the same eigenvalues and its eigenvectors

are S−1 times the eigenvectors of A. In particular, the matrix B is of the form

B =


λ1 b12 · · · b1n
0 b22 · · · b2n
...

...
. . .

...

0 bn2 · · · bnn

 .
Let C be the matrix

C =


b22 · · · b2n
...

. . .
...

bn2 · · · bnn

 .
Then

pB(λ) = (λ− λ1) det(λI − C) = (λ− λ1)pC(λ).

So the eigenvalues of C are the other n− 1 eigenvalues of B.

Remark. Deflation introduces round-off error. If we find an eigenvalue of C, say λ2, we should use the inverse

power method with the original matrix A, to refine the estimate.

Definition 6.20. Let A ∈ Rn×n be a matrix. Then A is symmetric if A⊤ = A.

Definition 6.21. Let u1, . . . ,uk be vectors in Rn. The set of vectors are called orthonormal if u⊤
i uj = 0

for i ̸= j and u⊤
i ui = 1 for 1 ≤ i ≤ n.

Definition 6.22. A matrix U is called orthonormal if its columns are orthonormal

Theorem 6.23. A symmetric matrix has a complete set of eigenvectors and the eigenvectors can be chosen

to be orthonormal.

Remark. Power Method for Symmetric Matrices: The value βk+1 converges to λ1 with asymptotic error

constant |λ2/λ1|2 which is twice as fast as the general case.

Deflation for Symmetric Matrices: We can factor a matrix A into the form

A = UΛU−1 = UΛU⊤

where U is the matrix whose columns are an orthonormal set of eigenvectors of A and Λ is a diagonal matrix

whose entries are the eigenvalues. Then

A = UΛU⊤ = λ1u1u
⊤
1 + · · ·λnunu

⊤
n

If we know u1 and λ1, then A− λ1u1u
⊤
1 has eigenvalues 0, λ2, . . . , λn and eigenvectors u1,u2, . . . ,un.
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Theorem 6.24. If A ∈ Rn×n is symmetric, i.e., A⊤ = A, then the eigenvalues λ1, . . . , λn of the A are all

real.

Theorem 6.25. If λ ∈ C (or R) is an eigenvalue of A ∈ Rn×n, and || · ||m is any matrix norm compatbile

with a vector norm || · ||v, then |λ| ≤ ||A||m.

Corollary 6.26. Since |λ| ≤ ||A||1 and |λ| ≤ ||A||∞. Thus

|λ| ≤ max
1≤j≤n

n∑
i=1

|aij | and |λ| ≤ max
1≤i≤n

n∑
j=1

|aij |.

In particular,

|λ| ≤ n max
1≤i,j≤n

|aij |.

Remark. The previous corollary states that every eigenvalue λ of A is in the circle centered at 0 in the

complex plane of radius ||A||1 and ||A||∞.

Theorem 6.27 (Gershgorin Circle Theorem). Let A ∈ Rn×n (or Cn×n), and define the absolute off-

diagonal row and column sums to be

rk =

n∑
j=1,j ̸=k

|akj | and ck =

n∑
i=1,i̸=k

|aik| for 1 ≤ k ≤ n.

For 1 ≤ k ≤ n, let Rk and Ck be the circles in C centered at akk with radius rk and ck, respectively:

Rk = {z ∈ C : |z − akk| ≤ rk} and Ck = {z ∈ C : |z − akk| ≤ ck}.

If λ is an eigenvalue of A, then λ ∈
⋃n

k=1Rk, and also λ ∈
⋃n

k=1 Ck.

Corollary 6.28. If m of the row Gershgorin disks of A are disjoint from the other row disks, then exactly

m eigenvalues of A lie in the union of these m disks.

6.3 Transformation Methods

Definition 6.29. For any nonzero vector u ∈ Rn, define Q ∈ Rn×n by

Q = I − 2

||u||22
uu⊤.

We call Q a Householder transformation. (Note that ||u||22 = u⊤u.)

Theorem 6.30. Let U ∈ Rn×n be a n× n matrix. The following are equivalent:

(i) The columns of U are orthonormal;

(ii) The rows of U are orthonormal;

(iii) U⊤U = I;

(iv) UU⊤ = I;

(v) For all x ∈ Rn, ||Ux||22 = ||x||22.

Definition 6.31. Matrices satisfying the conditions of Theorem 6.30 are called orthogonal matrices.

Lemma 6.32. Let Q be a Householder transformation.
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(i) Q is symmetic;

(ii) Q is orthogonal;

(iii) Geometrically, Q represents a reflection.

Remark. In general, we should never compute Q. Instead, compute u⊤u and β = 2/(u⊤u).

(i) To compute Qx, we compute Qx = x− β(u⊤x)u (requires 2n multiplications).

(ii) To compute QA for a matrix A, we compute

QA =
[
Qa1 Qa2 · · · Qan

]
.

(iii) To compute AQ for a matrix A, we compute

AQ =


(Qb1)

⊤

(Qb2)
⊤

...

(Qbn)
⊤


where b⊤

1 ,b
⊤
2 , . . . ,b

⊤
n are the rows of A.

Lemma 6.33. Suppose Q = I − 2uu⊤/(u⊤u) is a Householder transformation where for some k ≤ n,

u1 = u2 = · · · = uk−1 = 0.

(i) For any x ∈ Rn the first k− 1 elements of Qx are the same as the first k− 1 elemtns of x, that is, the

first k − 1 elements of x are fixed.

(ii) If in addition xk = xk+1 = · · · = xn = 0, then Qx = x.

Remark. One use of Householder transformation includes creating zeros. Starting with a vector v ̸= 0

(often the k + 1th or kth column of a matrix) and a k ≤ n, we want to find a Householder transformation

Q = I − 2uu⊤/(u⊤u) such that

(i) u1 = u2 = · · · = uk−1 = 0;

(ii) if w = Qv, then wk+1 = wk+2 = · · · = wn = 0.

By (i) of the previous lemma, w1 = v1, . . . , wk−1 = vk−1. To make ||w||22 = ||v||22, it must be the case

that wk = ±
√
|vk|2 + |vk+1|2 + · · ·+ |vn|2. We choose the sign of wk to avoid cancellation error. Putting

everything together

Qv = w =
[
v1 · · · vk−1 γ 0 · · · 0

]⊤
where γ = ±

√
|vk|2 + |vk+1|2 + · · ·+ |vn|2.

Definition 6.34 (QR Factorization, invertible real matrices). Let A ∈ Rn×n be invertible. QR

factorization of A is similar to LU factorization except we use Householder transformations instead of row

operations. We will compute Q,L where Q is an orthogonal matrix and R is an upper triangular matrix. In

particular, Q will be a product of Householder transformations. We will use Q−1 = Q⊤ instead of forward

substitution.

Start with A0 = A, and choose the Householder transformation Q1 mapping the first column of A0 into

a multiple of e1. Then A1 = Q1A0 will have zeros below the diagonal in the first column. Suppose by

induction that Ak−1 = Qk−1 · · ·Q2Q1A0 has zeros below the diagonal in columns 1, . . . , k − 1. Let v be

the kth column of Ak−1, and find the Householder transformation, Qk that creates zeros below the diagonal

in columns k. Multipying Ak−1 by Qk does not change the first k − 1 columns. Since the k + 1, . . . , n

entries of Qk are zero, Ak = QkAk−1 = Qk · · ·Q2Q1A0 has zeros below the diagonal in columns 1, . . . , k.
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Then R = An−1 = Qn−1 · · ·Q1A is upper triangular. Define Q⊤ = Qn−1 · · ·Q1. Then Q is orthogonal and

R = Q⊤A, so A = QR.

To solve any equation Ax = b, we save the u vectors for each Householder transformation Q1, . . . , Qn−1.

We then solve Qy = b, y = Qn−1 · · ·Q1b by applying the Householder transformations. Then we solve

Rx = y by back substitution.

6.4 Reduction to Hessenberg Form

Definition 6.35. An n × n matrix H is said to be in upper Hessenberg form (or just Hessenberg form) if

hij = 0 for i > j + 1. Hessenberg form is similar to upper diagonal matrices except the first subdiagonal is

allowed to have non-zero elements.

Remark. Reduction to Hessenberg form is similar to QR factorization. Start with A0 = A and choose a

Householder transformation Q(i) mapping the first column of A into[
a11 ∗ 0 · · · 0

]⊤
.

Then A(1) = Q(1)A(0)Q(1) will also have this same first column. Suppose by induction that A(k−1) =

Q(k−1) · · ·Q(1)A0Q(1) · · ·Q(k−1) has zeros below the first subdiagonal in columns 1, . . . , k−1. Let v be the kth

column of A(k−1), and choose a Householder transformationQ(k) such that the the k+2, . . . , n entries ofQ(k)v

are zero. Then Q(k)A(k−1) has zeros below the first subdiagonal in columns 1, . . . , k. Multiplying by Q(k)

from the first leaves the first columns fixed, so A(k) = Q(k)A(k−1)Q(k) also zeros below the first subdiagonal

in columns 1, . . . , k; completing the induction step. Then A(n−2) = Q(n−2) · · ·Q(1)A(0)Q(1) · · ·Q(n−2) is

Hessenberg.

Theorem 6.36. If A ∈ Rn×n is symmetric, and S is an orthogonal matrix, then S−1AS = S⊤AS is also

symmetric. Thus, if S−1AS is upper Hessenberg, it is symmetric and tridiagonal (the (ij) elements are 0 for

i > j + 1 and for i < j − 1).

Remark. Methods for estimating eigenvalues once reduced to Hessenberg form: Krylov’s method, Givens

method (sturm sequences), QR algorithm.

Definition 6.37 (Krylov’s Method). We set up and solve a linear system for the coefficients a1, . . . , an
of the characteristic polynomial

pA(λ) = det(λI −A) = λn + a1λ
n−1 + · · ·+ an−1λ+ an.

Start with an initial vector y0 and apply n steps of the basic power method: yk = Aky0 for 0 ≤ k ≤ n.

The values y0, Ay0, A
2y0 are called a Krylov sequence. By the Cayley-Hamilton Theorem, pA(A) = An +

a1A
n−1 + · · ·+ an−1A+ anI = 0, so applying this to y0, we get a1yn−1 + a2yn−2 + · · ·+ any0 = −yn. So

a =
[
a1 · · · an

]
is the solution of the linear system[

yn−1 · · · y0

]
a = yn.

If the matrix Y =
[
yn−1 · · · y0

]
is invertible, we can solve for a1, . . . , an.

Once we find a1, . . . , an, we still need to find the zeros of pA(λ). This does not work well computationally

since errors can be magnified.

Theorem 6.38. If A is upper Hessenberg with aj+1,j ̸= 0 for j = 1, . . . , n − 1, and we choose y0 = e1 in

Krylov’s method, then Y is invertible.
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Definition 6.39. A tridiagonal matrix is a matrix whose nonzero elements only lie on the main diagonal,

the lower diagonal, and the upper diagonal. Therefore,

M =


m11 m12 0 0 · · ·
m21 m22 m23 0 · · ·
0 m23 m33 m34 · · ·
0 0 m43 m44 · · ·
...

...
...

...
. . .


is a tridiagonal matrix.

Lemma 6.40. Let H be a real, n × n, symmetric tridiagonal matrix. If the subdiagonal entires all the

entires on the upper (lower) diagonal are nonzero, then H has n distinct simple eigenvalues λ1, . . . , λn.

Remark. In the case that H has a zero on the upper (lower) diagonal, we can break H up into smaller

diagonal block and consider each small block separately.

Definition 6.41. Let H be a real, n× n, symmetric tridiagonal matrix. For k = 1, . . . , n let

Hk =


d1 b1 · · · 0

b1 d2 · · · 0
...

...
. . .

...

0 0 · · · dn.


be the upper-left k× k sublock of H and let pk(t) is a polynomial of degree k, and define p0(t) = 1. We call

{pk(t)} a Sturm sequence. Expanding each pk(t), we have

p0(t) = 1,

p1(t) = d1 − t,

p2(t) = (d2 − t)p1(t)− b21p0(t),

...

pn(t) = (dn − t)pn−1(t)− b2n−1pn−2(t).

Lemma 6.42. The polynomial pk(t) defined above is (−1)k times the characteristic polynomial of Hk.

Theorem 6.43. Let c ∈ R, P0 = p0(c), P1 = p1(c), . . . , Pn = pn(c), and N(c) be the number of sign

agreements in adjacent terms P0, . . . , Pn. [P0 is always 1. If Pk = 0, give it the same sign as Pk−1.] Then

N(c) is the number of eigenvalues of H that are ≥ c.

Corollary 6.44. For r < s, N(r)−N(s) is the number of eigenvalues of H in [r, s).

Remark. We do not compute the polynomials p1(t), . . . , pk(t). Instead we use recursion to compute p0(c), p1(c), . . . , pn(c).

Definition 6.45 (Givens Method). Let H be a tridiagonal matrix. Using Theorem 6.43, we find intervals

with exactly one eigenvalue and successively refine them to get an estimate for the eigenvalue.

Remark. Since we know that |λ| ≤ ||H|| for any matrix norm consistent with a vector norm on Rn, we

can start Givens method with an interval like [−||H∞||, ||H||∞]. When c = −||H||∞, N(c) = n. When

c = −||H||∞, N(c) = 0 or N(c) = 1. One method of finding an eigenvalue is bisection.
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Definition 6.46 (Unshifted QR Algorithm). Given a real matrix A ∈ Rn×n with real eigenvalues, we

start with A(0) = A (usually A is already upper Hessenberg) and fr m = 0, 1, 2, . . ., we compute the QR

factorization of A(m): A(m) = Q(m)R(m) and set A(m+1) = R(m)Q(m).

Remark. Suppose A(m) is upper Hessenberg, and we use a Householder transformation to do the QR factor-

ization. Then Q(m)⊤ = Q
(m)
n−1 · · ·Q

(m)
1 is a product of Householder transformation., Q(m)⊤A(m) = R(m) is

upper triangular, and each Q
(m)
k (for 1 ≤ k ≤ n − 1) comes from a uk, Q

(m)
k = I − (2/u⊤

k uk)uku
⊤
k whose

only nonzero entries are the kth and (k + 1)st. Then Q(m) = Q
(m)
1 Q

(m)
2 · · ·Q(m)

n−1, and it is easily verified

that A(m+1) = R(m)Q(m) is also upper Hessenberg.

Lemma 6.47. The QR algorithm iteration A(0) → A(m+1) preserves upper Hessenberg form.

Definition 6.48. Define the Q̂(m) and R̂(m) to be the following matrices

Q̂(m) = Q(0)Q(1) · · ·Q(m), and R̂(m) = R(m)R(m−1) · · ·R(0).

By induction on A(m+1) = Q(m)⊤A(m)Q(m), we see that A(m+1) = Q̂(m)
⊤
AQ̂(m). So Q̂(m) is the accumula-

tion of the orthogonal matrices used in the similarity transformations of the first m+1 iterations of the QR

algorithm.

Lemma 6.49. Q̂(m)R̂(m) = Am+1.

Remark. Relation to the power method: For i ≤ j ≤ n, let q̂
(m)
j denote the jth column of Q̂(m), and let r̂

(m)
ij

be the elements of R̂(m). Since R̂(m) is upper triangular,

Am+1e1 = Q̂(m)R̂(m)e1 = r̂
(m)
11 q̂

(m)
1 .

The first column of Q̂(m) is in the direction of the vector obtained by applying the power method for A with

x0 = e1. If λ1 is the dominant eigenvalue of A with eigenvector u1, then q̂
(m)
1 converges to the direction of

u1 as m → ∞, and the first column of A(m+1) = Q̂(m)
⊤
AQ̂(m) converges to [λ1, 0, . . . , 0]

⊤
as m → ∞. In

particular, the (2, 1) element of A(m+1) → 0 as m→ ∞.

Relation to the inverse power method: We reach a similar conclusion as above for the matrix A(m+1). If

1/λn is the dominant eigenvalues of (A⊤)−1 with eigenvector yn of A⊤, then the direction of q
(m)
n converges in

the direction of yn as m→ ∞, and the last column of A(m+1)⊤ = Q̂(m)
⊤
A⊤Q̂(m) converges to [0, . . . , 0, λn]

⊤

as m→ ∞. Hence the nth row of A(m+1) converges to [0, . . . , 0, λn].

Theorem 6.50. Suppose A ∈ Rn×n has real eigenvalues λ1, . . . , λn with |λ1| > |λ2| > · · · > |λn| > 0. [If

S is the invertible matrix whose columns are the eigenvectors, we assume that S−1 has an LU factorization

without pivtoing; this assumption is related to not having zero components in the direction of the dominant

eigenvectors in the power method.] Then a
(m)
ij → 0 for 1 ≤ j < i ≤ n and a

(m)
jj → λj for 1 ≤ j ≤ n.

6.5 Schur’s Decomposition

Definition 6.51. Let A ∈ Cm×n be a complex matrix. Then its Hermitian transpose is the conjugate

transpose AH = A
⊤
.

Definition 6.52. The complex inner product of two vectors w, z ∈ Cn is

wHz =

n∑
j=1

wjzj .
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Note that zHz =
∑n

j=1 zjzj = ||z||22.

Definition 6.53. Two vectors w, z ∈ Cn are called orthogonal if wHz = 0. The analogue of orthogonal

matrices in Cn×n is unitary matrices.

Theorem 6.54. Let U ∈ Cn×n be a matrix. The following are equivalent:

(i) the columns of U are orthonormal;

(ii) the rows of U are orthonormal;

(iii) UHU = I;

(iv) UUH = I;

(v) for all z ∈ Cn, ||Uz||22 = ||z||22.

Definition 6.55. A matrix A ∈ Cn×n is called Hermitian if AH = A.

Theorem 6.56. If A ∈ Cn×n is Hermitian, its eigenvalues λ1, . . . , λn are all real.

Definition 6.57. For a nonzero U ∈ Cn, then Q = I = 2/(uHu)uuH ∈ Cn×n is a complex Householder

transformation. Complex Householder transformations are Hermitian and unitary, so Q−1 = QH = Q.

Given two nonzero vectors v ̸= w ∈ Cn with ||v||2 = ||w||2, setting u = v−w gives a complex Householder

transformation for which Qv = w. provided vHw is real. (if not, replace w by Sw for S ∈ C where |S| = 1.)

Definition 6.58. Two matices A,B ∈ Cn×n are called unitarily similar if there exists a unitary matrix

U ∈ Cn×n for which UHAU = B.

Theorem 6.59 (Schur’s Theorem). Let A ∈ Cn×n be a matrix. Then there exists a unitary U ∈ Cn×n

and an upper triangular T ∈ Cn×n for which UHAU = T .

Corollary 6.60. Let A ∈ Rn×n be an real matrix, and suppose its eigenvalues are all real. Then there exists

an orthogonal U ∈ Rn×n and an upper triangular T ∈ Rn×n for which U⊤AU = T .

Remark. The eigenvalues of an upper triangular matrix T are its diagonal elements. So if UHAU = T (with

unitary U), we can read off the eigenvalues of A from the diagonal of T . Suppose A ∈ Rn×n has a complex

eigenvalue λ = α + iβ where β ̸= 0 with corresponding eigenvectors z = v + iw. Then λ = α − iβ is an

eigenvalue with a corresponding eigenvector z = v − iw. Since v,w are linearly independent over C, they
are linearly independent over R, so

A
[
v w

]
=
[
v w

] [ α β

−β α

]
.

We can reduce to almost triangular form if we allow 2 x 2 diagonal blocks for the complex eigenvalues.

Remark. Suppose A ∈ Rn×n has complex eigenvalue λ = α + iβ (α, β ∈ R, β ̸= 0) with a corresponding

eigenvector z = v + iw (z ̸= 0, z ∈ Cn,v,w ∈ Rn). The vectors v and w (in C) span a two-dimensional

subspace spanned by z and z, but over R they span a two-dimensional subspace in Rn that is invariant under
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A. Then

S−1AS =


α β · · ·
−β α · · ·
0 0
...

... C

0 0


where C ∈ R(n−2)×(n−2) and the eigenvalues of C are the rest of the eigenvalues of A.

Definition 6.61. An n× n matrix W is in quasi-upper triangular form if it is block upper triangular with

only 1x1 or 2x2 blocks.

Theorem 6.62. Let A ∈ Rn×n be a real matrix. Then there exists an orthogonal matrix U ∈ Rn and a

quasi-upper triangular matrix W ∈ Rn×n for which U⊤AU =W .

Theorem 6.63 (Spectral Theorem for Hermitian matrices). A ∈ Cn×n is Hermitian AH = A, if and

only if A is unitarily similar to real diagonal matrix Λ, i.e., there is a unitary U ∈ Cn×n with UHAU = Λ.

Corollary 6.64. A ∈ Rn×n is symmetric (A⊤ = A), if and only if A is orthogonally similar to a real diagonal

Λ, i.e., there is an orthogonal U ∈ Rn×n with U⊤AU = Λ.

Definition 6.65. A matrix A ∈ Cn×n is called a normal matrix if A and AH compute, i.e., AHA = AAH .

Lemma 6.66. If A ∈ Cn×n is normal and U ∈ Cn×n is unitary, then UHAU is normal.

Lemma 6.67. If T ∈ Cn×n is normal and upper triangular, then T is diagonal.

Theorem 6.68 (Spectral Theorem for Normal Matrices). A ∈ Cn×n is normal, if and only if A is

unitarily similar to a diagonal matrix Λ ∈ Cn×n, i.e., there exists a unitary U ∈ Cn×n with UHAU = Λ.

Remark. Special cases:

(i) A ∈ Cn×n is Hermitian if and only if Λ is Hermitian.

(ii) A ∈ Cn×n is skew Hermitian (AH = −A) if and only if Λ is skew Hermitian. In this case, Λ has pure

imaginary eigenvalues.

(iii) A ∈ Cn×n is unitary if and only if Λ is unitary.

Definition 6.69. Let A ∈ Cn×n be a matrix. The spectral radius of A, often denoted by p(A), is p(A) =

max1≤j≤n |λj |, where λ1, . . . , λn are the eigenvalues of A.

Theorem 6.70. Let A ∈ Cn×n be a matrix. Then p(A) < 1 if and only if limm→∞Am = 0.

Corollary 6.71. An iterative method x(k+1) =Mx(k) + g is convergent for all g if and only if p(M) < 1.

Remark. It can be shown that if p(M) < 1, then there is a vector norm on Rn or Cn for which the operator

norm of M satisfies ||M || < 1.
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6.6 Inverse Power Method for Polynomials

Definition 6.72. Given a monic polynomial p(x) = xn + a1x
n−1 + · · ·+ an−1x+ an of degree n (a1, . . . , an

could be real or complex), the companion matrix of p is the n× n matrix

A =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−an an−1 −an−2 · · · −an


with 1s along the first super diagonal, and −an, . . . ,−a1 in the last row and zeros elsewhere. The transpose

of A is upper Hessenberg.

Lemma 6.73. The characteristic polynomial of the companion matrix A of the polynomial p is the polyno-

mial itself.

Theorem 6.74. Let p(x) = xn + a1x
n−1 + · · ·+ an. Let C1, C2, . . . , Cn be the circular disks in the complex

plane

C1 = {z : |z + a1| ≤ 1},
Ck = {z : |z| ≤ 1 + |ak|} for 2 ≤ k ≤ n− 1,

Cn = {z : |z| ≤ |an|}.

Then all the zeros of p lie in
⋃n

k−1 Ck.

Corollary 6.75. Let r = 1 +max1≤j≤n |aj |, and C = {z ∈ C : |z| ≤ r}. Then all of the zeros of p lie in C.

Remark. We could use Gershgorin’s theorem on the rows of the companion matrix, but the columns give

better estimates.

Theorem 6.76. The companion matrix A of p(x) = xn + a1x
n−1 + · · ·+ an is diagonalizable if and only if

the zeros of p are all simple.

6.7 Shifted QR Algorithm

Definition 6.77 (QR Algorithm, Explicitly Shifted). Given A ∈ Cn×n, generate a sequence A =

A0, A1, A2, . . . of matrices unitarily similar to A as follows: given Ak, choose a scalar κk and choose a QR

factorization of Ak − κkI = QkRk and use Qk for the next similar transformation. Define Q̂k = Q0 · · ·Qk,

R̂k = Rk · · ·R0. Then Ak+1 = Q̂k

H
AQ̂k, and Q̂kR̂k = (A− κ0I) · · · (A− κkI).

Remark. Suppose A is diagonalizable with eigenvalues λ1, . . . , λn and eigenvectors x1, . . . ,xn. If |λ1| >
|λ2| ≥ · · · ≥ |λn and |κk| ≤ C < |λ1| − |λ2| for k = 0, 1, 2, . . . where C is a constant, then the first column of

Ak+1 = Q̂k

H
AQ̂k converges to [λ1, 0, . . . , 0]

⊤ as k → ∞.

On the other hand, if we shift by κν at each step, ν = 0, 1, . . . , k, and the κν ’s for sufficiently large ν are

all closest to some eigenvalue µ of A, then the best column of Ak+1 = Q̂k

H
AQ̂k converges to [0, . . . , 0, µ]⊤

as k → ∞, and the last column converges to [0, . . . , 0, µ].
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Remark. To speed up convergence, we would like shifts κk so that the algorithm actually applies Raleigh

quotient iteration to AH starting with en. Choose κ0 = eHn A
Hen, i.e., choose κ0 = αnn. Suppose for some

k ≥ 1, we have obtained Ak. Then we choose κk = (q̂n
(k−1))

H
AH q̂n

(k−1),

κk = (q̂n
(k−1))

H
Aq̂n

(k−1)

= eHn Q̂k−1

H
AQk−1en = eHn Aken = α(k)

nn .

So choosing κk = α
(k)
nn gives Rayleigh quotient iteration.

Definition 6.78. A plane rotation of the (i, j)-plane is a matrix obtained the following way: starting with

the identity matrix, set the (i, i) entry to be γ, the (i, j) entry to be σ, the (j, i) entry to be −σ, and the

(j, j) entry to be γ, that is,

Pij = In +



. . .

γ − 1 · · · σ − 1
...

...

−σ − 1 · · · γ − 1
. . .


.

Remark. Plane rotations can be used to create zeros. Given [α, β]⊤ ∈ R2, we want to choose γ, δ so that[
γ σ

−σ γ

][
α

β

]
=

[
ν

0

]
.

Choose ν =
√
α2 + β2, so γ = α/ν and σ = β/ν.

Remark. Suppose A0 is upper Hessenberg, and we apply the QR algorithm using plane rotations as shown

above. Then α
(k)
n,n−1 → 0 quadratically (cubically if A0 is also Hermitian). After α

(k)
n,n−1 is sufficiently

small, we should working with the leading principal submatrices rather than the entire matrix, and repeat

the process. If any of the subdiagonal elements are sufficiently small, we should break the matrix into

submatrices with no non-zero elements on the subdiagonal.

Remark. Suppose we started with A, that U is unitary. Then there exists A0 = UHAU is upper Hessenberg,

and Ak+1 = Q̂k

H
A0Q̂k as usual. Suppose the subdiagonal elements of Ak+1 are sufficiently small; we treat

Ak+1 as upper triangular. Given a j for which α
(k+1)
ii ̸= a

(k+1)
jj for i < j, we fined a yj of the upper

triangular system (Ak+1 − α
(k+1)
jj I)yj = 0 by setting the j + 1, . . . , n elements of yj to 0, setting the jth

element to 1, then backsolving. Then xj = UQ̂kyj is approximately the eigenvector of A corresponding to

the approximate eigenvalue α
(k+1)
jj .

Definition 6.79. An upper Hessenberg matrix B ∈ Cn×n is called unreduced if βi+1,i ̸= 0 for i = 1, . . . , n−1.

Note that with deflation, the QR algorithm works only with unreduced Hessenberg matrices.

Theorem 6.80 (Implicit Q Theorem). Suppose A ∈ Cn×n such that there exists a unitary Q ∈ Cn×n,

and there exist unreduced upper Hessenberg B ∈ Cn×n with βi+1,i > 0 for i = 1, . . . , n − 1 such that

B = QHAQ. Then B and Q are uniquely determined by q1, the first column of Q.

Theorem 6.81. Suppose A ∈ Cn×n such that there exists a unitary Q ∈ Cn×n, and there exist unreduced

upper Hessenberg B ∈ Cn×n with βi+1,i > 0 for i = 1, . . . , n− 1 such that B = QHAQ. Suppose Q′ is any

unitary matrix whose first column is the same as the first column of Q, and B′ is any upper Hessenberg
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matrix such that B′ = Q′HAQ′. Then there exists a diagonal unitary matrix D such that B′ = DHBD and

Q′ = QD.

Lemma 6.82. Suppose A ∈ Cn×n is an unreduced upper Hessenberg matrix, and we apply one step of the

QR algorithm with shift κ: A−κI = QR (where Q is unitary and R is upper triangular), and let B = QHAQ.

If A− κ is invertible, then B is also an unrreduced upper Hessenberg matrix. If A− κ is singular, then B is

upper Hessenberg matrix with βi+1,i ̸= 0 for i = 1, . . . , n− 2, βn,n−1 = 0, and βnn = κ.

Remark. The ideal behind the implicit shift strategy is the observation that we only need to find Q and B.

Q can be found by QR factoring A−κI. We could instead: (1) find a unitary PH with the same first column

as Q, (2) reduce PAPH to upper Hessenberg form in the usual way: let U1, . . . , Un−2 be the elementary

reflectors used to reduce PAPH to upper Hessenberg form:

Un−2 = U1PAP
HU1 · · ·Un−1 = B′,

and let Q′ = PHU1 · · ·Un−2; then B
′ = Q′HAQ′, and since U1, · · · , Un−2 leave e1 fixed, the first column of

Q′ is the firt column of PH , which is the first column of Q. Then the uniqueness theorem above tells us that

there exists a diagonal unitary D such that Q′ = QD and B′ = DHBD.

Remark. Let R′ = Q′H(A − κI). Then R′ = DHQH(A − κI) = DHR is upper triangular, and Q′R′ is also

a QR factorization of A− κI. Notice also that the effect of this D disappears after the next QR step.

(Finding P ): We first find the first column of Q. Since R is upper triangular,

p11q1 = p11Qe1 = QRe1 = (A− κI)e1 = [α11 − κ, α21, 0, . . . , 0]
⊤,

so q1 is a multiple of a = (A − κI)e1. Choose an elementary reflection P such that Pa = ±||a||2e1; then
PHe1 = ±a/||a||2 is a multiple of q1.

(Reducing PAPH to upper Hessenberg form): Since P is an element reflection in the (1, 2) plane, PAPH

has zero structure which is upper Hessenberg except for the 3, 1 element. We can “choose” this nonzero

element to the 4, 2 element in U1PAP
HU1. Suppose Uk−1 · · ·U1PAP

HU1 · · ·Uk−1 is upper Hessenberg

except for the k+2, k element. Choosing an element reflection Uk in the (k+1, k+2) plane, we can choose

this nonzero element to the k + 3, k + 1 element in Uk · · ·U1PAP
HU1 · · ·Uk. After the k = n − 2 step,

the matrix is upper Hessenberg. Then the first column of Q′ = PHU1 · · ·Un−2 is a multiple of q1 and

B′ = Q′HAQ′ is upper Hessenberg.

Theorem 6.83. Suppose A ∈ Cn×n is unreduced upper Hessenberg and we apply two steps of the QR

algorithm with shifts k0 and k1:

A− κ0I = Q0R0, A1 = QH
0 AQ0, A1 − κ1I = Q1R1, B = QH

1 A1Q1.

Then B = QH
1 Q

H
0 AQ0A1 and (A − κ0I)(A − κ1I) = Q0Q1R1R0. In addition, we have the following

conclusions.

(i) If neither of κ0, κ1 is an eigenvalue, or if κ0 = κ1 is an eigenvalue of algebraic multiplicity 1, then B is

unreduced upper Hessenberg with βi+1,i for i = 1, . . . , n− 2, βn,n−1 = 0, and βnn is the eigenvalue.

(ii) If κ0 = κ1 is an eigenvalue of algebraic multiplicity > 1, then B is upper Hessenberg with βi+1,i ̸= 0

for i = 1, . . . , n− 3, βn−1,n−2 = βn,n−1 = 0, and βnn = κ0 and βn−1,n−1 = κ1.

Suppose, in addition, Q′ is unitary with the same first column as Q0Q1, and B
′ is upper Hessenberg with

B′ = Q′HAQ′. Then, we have the following conclusions.

(i) If neither of κ0, κ1 is an eigenvalue, or if κ0 ̸= κ1 and exactly one is an eigenvalue, or if κ0 = κ1 is an

eigenvalue of algebraic multiplicity 1, then there exists a diagonal unitary D such that Q′ = QD and

B′ = DHBD.
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(ii) If κ0 = κ1 is an eigenvalue of algebraic multiplicity > 1, or if κ0 ̸= κ1 are both eigenvalues, then

β′
n−1,n−2 = 0, there exists a unitary U which is diagonal except possibly for the n, n− 1 and n− 1, n

elements such that Q′ = QU and B′ = UHBU .

Remark. Based on the conclusions above, we want to find the first column of Q0Q1:

p
(1)
11 p

(0)
11 (Q0Q1e1) = Q0Q1R1R0e1 = (A− κ0I)(A− κ1I)e1.

Since A is upper Hessenberg, this vector has at most nonzero entries in the 1, 2, 3 positions and depends

only on κ0 + κ1, κ0κ1, and the upper 3x2 part of A:α11 α12

α21 α22

0 α32

 .
Choose an elementary reflector P in this (1, 2, 3) three-spacing mapping this vector to a multiple of e1.

Then the first column of PH is a multiple of the first column of Q0Q1.

6.8 Subspace Iteration

Theorem 6.84. Suppose A ∈ Cn×n. Let S be a subspace of Cn of dimension p, and define AS = {Ax : x ∈
S}. Then A(AS) = A2S. In general, A(A · · · (AS)) = AkS.

Definition 6.85 (Power Method for Subspaces). Choose x ̸= 0 ∈ Cn. Let p = 1, S = span{x}. Suppose
|λ1| > |λ2| ≥ · · · ≥ |λn| for the eigenvalues λ1, . . . , λn of A, let x1 be the eigenvector corresponding to λ1,

and suppose the coefficient of x1 for x is nonzero. Consider the sequnce of subspaces S,AS,A2S, . . .. As

k → ∞, the subspaces AkS “converge” to span{x1}.

Definition 6.86. Fix p (with 1 ≤ p ≤ n − 1). Let Mp be the set of all p-dimensional subspace of Cn. For

S, T ∈Mp, and define

d(S, T ) = sup
s∈S,||s||=1

inf
t∈T

||s− t||2

to be the distance between S and T .

Lemma 6.87. Let S, T ∈Mp. Then

(i) d(S, T ) = sups̸=0∈S
||s−t||2
||s||2 ,

(ii) 0 ≤ d(S, T ) ≤ 1,

(iii) d is a matrix on Mp.

Definition 6.88. Given S ∈Mp, define PS ∈ Cn×n by:

PSx =

{
x if x ∈ S,

0 if x ∈ S⊥ = {y : yHs = 0 for s ∈ S}
.

We call PS an orthogonal projection.

Lemma 6.89. Let PS be an orthogonal projection. Then

(i) P 2
S = PS ;

(ii) PH
S = PS ;

(iii) I − PS = PS⊥ ;
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(iv) for x ∈ Cn, ||PSx||22 + ||(I − PS)x||22 = ||x||22.

Definition 6.90. Let S, T ∈Mp. Define θ with 0 ≤ θ ≤ π/2 such that

cos θ = min
s̸=0∈S

max
t̸=0∈T

|sHt|
||s||2||t||2

.

We call θ the angle between subspaces.

Theorem 6.91. If S, T ∈Mp and θ be the angle between them, then

d(S, T ) = ||PS − PT ||2 = sin θ.

Corollary 6.92. If S, T ∈Mp and θ be the angle between them, then

d(S, T ) = 1 ⇔ S ∩ T⊥ ̸= {0} ⇔ T ∩ S⊥ ̸= {0}.

Theorem 6.93. Suppose A ∈ Cn×n is diagonalizable with eigenvalues λ1, . . . , λn satisfying

|λ1| ≥ · · · ≥ |λp| > |λp+1| ≥ · · · ≥ |λn|,

and eigenvectors x1, . . . ,xn. Let T = span{x1, . . . ,xp} (called the dormant subspace), and U = span{xp+1, . . . ,xn}
(called the codominant subspace). Suppose S ∩ Cn is any subspace of dim p such that S ∩ U = {0}. Then

there exists C such that

d(AkS, T ) ≤ C

∣∣∣∣λp+1

λp

∣∣∣∣k .
Remark. (i) If λp+1 does not have complete set of eigenvectors, get d(AkS, T ) bounded by a polynomial

in k times |λp+1/λp|k.
(ii) As in the power method, shifts can be used.

(iii) As in the powe rmethod, inverse subspace iteration is possible.

Remark. Let Wk = [Uk, Vk] ∈ Cn×n be unitary such that the columns of Uk span AkS. Write

WH
k AWk =

[
B11 B12

B21 B22

]
.

It can be shown that B21 → 0 at the same rate that AkS → T .

Lemma 6.94. Choose S ∈ dimS = p and S ∩ U = {0}. Then since |λp| > |λp+1|, Null(A) ⊂ U , so

S ∩Null(A) = {0}; also AkS ∩ U = {0}. Suppose q
(0)
1 , . . . ,q

(0)
p span S. Then Akq

(0)
1 , . . . , Akq

(0)
p span AkS.

Theorem 6.95. Suppose A ∩ Cn×n is invertible and S is a p-dim subspace. Then AkS and (AH)−k(S⊥)

are orthogonal complements.

Theorem 6.96. For simplicity, consider the unshifted QR algorithm. Recall Ak+1 = Q̃kR̃k. Let q
(j)
j = ej

for j = 1, . . . , n and p = n in subspace iteration, and let S
(k)
j = span{Ak+1e1, . . . , A

k+1ej}; let q̃(k)j , . . . , q̃
(k)
n

denote the columns of Q̃k. Then span{q̃(k)j , . . . , q̃
(k)
n } = S

(k)
j .
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7 Inner Product Spaces

7.1 Newton’s Method

Definition 7.1. Suppose we have a non-linear system of n real equations with n unknowns x1, . . . , xn:

f1(x1, . . . , xn) = 0,

f2(x1, . . . , xn) = 0,
...

fn(x1, . . . , xn) = 0.

If x = [x1, . . . , xn]
⊤, f(x) = [f1(x), . . . , fn(x)]

⊤, then the system becomes f(x) = 0.

At xk, we define an n× n matrix

J [xk] =


∂f1
∂x1

(xk) · · · ∂f1
∂xn

(xk)
...

. . .
...

∂fn
∂x1

(xk) · · · ∂fn
∂xn

(xk)


to be the Jacobian matrix of f at xk. If J(xk) is invertible, we solve the linear system

J [xk] ·∆xk = −f(xk) for ∆xk,

and then set xk+1 = xk + ∆xk. Theoretically, xk+1 = xk − J [xk]
−1

f(xk) which is the higher dimensional

analogue of Newton’s method.

Theorem 7.2 (Local Convergence Theorem). Suppose f : U → Rn is defined on an open set U ⊂ Rn

such that f ∈ C2 and f(s) = 0 for some s ∈ U , and that J [s] is invertible. Starting with an x0 ∈ U , we

generate a sequence {xk} by Newton’s method xk+1 = xk − J [xk]
−1

f(xk) provided that each xk ∈ U and

each J [xk] is invertible. Let ek = s−xk and let Bp = {x ∈ Rn : ||x− s||2 ≤ p}. Then there exists a constant

p > 0 for which Bp ⊂ U and for all x ∈ Bp, J [x] is inverible, and if x0 ∈ Bp then

(i) the sequence {xk} is well-defined and xk ∈ Bp for all k ≥ 0,

(ii) xk → s, and

(iii) for some constant K, ||ek+1||2 ≤ K||ek||22.

7.2 Inner Product Spaces and Least Squares

Definition 7.3. A real inner product space is a real vector space V with an inner product V × V → R≥0,

denoted by ⟨x, y⟩, satisfying:
(i) for all x ∈ V , ⟨x, x⟩ ≥ 0, ⟨x, x⟩ = 0 if and only if x = 0;

(ii) for all α, β ∈ R, x, y, z ∈ V , ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩;
(iii) for all x, y ∈ V , ⟨x, y⟩ = ⟨y, x⟩.

Remark. The inner product is linear in the first variable, by (ii); symmetric, by (iii); and linear in the second

variable, by (ii) and (iii), so the inner product is a symmetric bilinear form which is positive definite, by (i).

Theorem 7.4 (Cauchy Schwarz Inequality). Let V be a real inner product space. Then

|⟨x, y⟩| ≤ ||x|| · ||y|| for all x, y ∈ V.

Definition 7.5. Define the norm to be ||x|| =
√

⟨x, x⟩ for each x ∈ V .
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Lemma 7.6. Suppose V is a real inner product space. Let α ∈ R and x, v ∈ V .

(i) ||x|| ≥ 0, ||x|| = 0 if and only if x = 0;

(ii) ||αx|| = |α| · ||x||;
(iii) ||x+ y|| ≤ ||x||+ ||y||.

Definition 7.7. If ⟨x, r⟩ = 0, we say x and y are orthogonal ; we write x ⊥ y. If S is a subspace of V , and

y ∈ V satisfies y ⊥ x for all x ∈ S, then we say that y is orthogonal to S and write y ⊥ S. Similarly, we can

define the set of vectors orthogonal to S by

S⊥ = {y ∈ V : y ⊥ S}.

Lemma 7.8. Let S be a subspace of V . Then

(i) S⊥ is a subspace of V ,

(ii) S ∩ S⊥ = {0}.

Definition 7.9. If φ1, φ2, . . . , φn ∈ V satisfy

(i) ⟨φj , φk⟩ = 0 for j ̸= k, and

(ii) ⟨φj , φj⟩ ≠ 0 for j = 1, . . . , n;

then we say that {φ1, . . . , φn} is an orthogonal system in V . If in addition

(iii) ⟨φj , φj⟩ = 1 for j = 1, . . . , n;

then we say that {φ1, . . . , φn} is an orthonormal system in V .

Lemma 7.10. Suppose V is a real inner product space.

(i) If {φ1, . . . , φn} is an orthogonal system, then φ1, . . . , φn are linearly independent.

(ii) If ⟨x, y⟩ = 0, then ||x+ y||2 = ||x||2 + ||y||2 (Pythagorean Theorem).

(iii) If {φ1, . . . , φn} is an orthogonal system, ||
∑n

j=1 cjφj ||2 =
∑n

j=1 |cj |2⟨φj , φj⟩.
(iv) If {φ1, . . . , φn} is an orthonormal system, ||

∑n
j=1 cjφj ||2 =

∑n
j=1 |cj |2.

Theorem 7.11 (Gram-Schmidt Process). Let S be an n-dimensional subspace of an inner product space

V . Then S has an orthonormal basis.

Remark. (Orthonormal version) Start with any basis φ1, φ2, . . . , φn of S. Let

ζ1 = φ1,

ψ1 = ζ1/||ζ1||,
ζ2 = φ2 − ⟨φ2, ψ1⟩ψ1,

ψ2 = ζ2/||ζ2||,
...

ζj = φj −
j−1∑
k=1

⟨φj , ψk⟩ψk,

ψj = ζj/||ζj ||.

Then ψ1, ψ2, . . . , ψn is an orthonormal basis of S.
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(Orthogonal version) Start with any basis φ1, φ2, . . . , φn of S. Let

η1 = φ1,

η2 = φ2 −
⟨φ2, η1⟩
⟨η1, η1⟩

η1,

...

ηj = φ2 −
n−1∑
k=1

⟨φj , ηk⟩
⟨ηk, ηk⟩

ηk.

Then η1, η2, . . . , ηn is an orthogonal basis of S.

Theorem 7.12 (The Projection Theorem). Let V be an inner product space, and let S be a finite

dimensional subspace. Then

(i) V = S ⊕ S⊥, i.e., given a v ∈ V , there are unique elements x∗ ∈ S and e∗ ∈ S⊥ for which y = x+ e.

(ii) Given a y ∈ V , the x in (i) is the unique element of S which satisfies ⟨y − x∗, x⟩ = 0 for all x ∈ S.

(iii) Given a y ∈ V , then the x∗ in (i) is the unique element of S which minimizes ||y − x||2 over all x ∈ S.

Theorem 7.13 (The Normal Equations). Let V be an inner product space, and let S be a finite dimen-

sional subspace, and let φ1, . . . , φn ∈ S be a set of vectors which spans S. Represent each element x ∈ S in

terms of φ1, . . . , φn: x = c1φ1+ · · ·+ cnφn. Let y ∈ V . Then x ∈ S minimizes ||y−x||2 = ||y−
∑n

j=1 cjφj ||2

over all possible elements x of S if and only if the coefficients c1, . . . , cn of x satisfy the normal equations:
⟨φ1, φ1⟩ ⟨φ1, φ2⟩ · · · ⟨φ1, φn⟩
⟨φ2, φ1⟩ ⟨φ2, φ2⟩ · · · ⟨φ2, φn⟩

...
...

. . .
...

⟨φn, φ1⟩ ⟨φn, φ2⟩ · · · ⟨φn, φn⟩



c1
c2
...

cn

 =


⟨y, φ1⟩
⟨y, φ2⟩

...

⟨y, φn⟩

 .

Lemma 7.14. The following are special cases of the normal equations.

(i) If φ1, . . . , φn is an orthogonal basis of S, then

x∗ =

n∑
j=1

⟨y, φj⟩
⟨φj , φj⟩

φj .

(ii) If φ1, . . . , φn is an orthonomal basis of S, then

x∗ =

n∑
j=1

⟨y, φj⟩φj .

(iii) If V is a finite dimensional inner product space and ψ1, . . . , ψn is an orthonormal basis of V , then every

y ∈ V , y =
∑n

j=1⟨y, ψj⟩ψj . Take S = V . Then S⊥ = {0}, e∗ = 0 and x∗ = y.

Theorem 7.15 (Bessel’s Inequality). Let V be an inner product space, and suppose {ψ1, . . . , ψn} is an

orthonormal set in V . Then for every y ∈ V ,

n∑
j=1

|⟨y, ψj⟩|2 ≤ ||y||2.

Bessel’s Inequalty holds for infinite inner product spaces. Let V be an inner product space, and suppose

{ψ1, ψ2, ψ3, . . .} is an orthonormal set in V . Then for every y ∈ V ,

∞∑
j=1

|⟨y, ψj⟩|2 ≤ ||y||2.
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Theorem 7.16. Let V be an inner product space, and suppose {ψ1, ψ2, ψ3, . . .} is an orthonormal set in V .

Then the following two conditions are equivalent:

(i) (Parseval’s Equality) For every y ∈ V ,

∞∑
j=1

|⟨y, ψj⟩|2 = ||y||2.

(ii) For every y ∈ V , the series
∑∞

j=1⟨y, ψj⟩ψj converges in V to y, i.e.,

||y −
n∑

j−1

⟨y, ψj⟩ψj ||

goes to 0 as n→ ∞.

Definition 7.17. If {ψ1, ψ2, ψ3, . . .} is an orthonormal set in an inner product space V which satisfies

Parseval’s equality, then {ψ1, ψ2, ψ3, . . .} is called a complete orthonormal system in V .

7.3 Applications of Inner Product Spaces

Remark. (Application 1) Linear least squares in Rm: Suppose m ≥ n and a(1),a(2), . . . ,a(n) ∈ Rm. Let

S = span{a(1), . . . ,a(n)}. Given y ∈ Rm, find x∗ ∈ S closest to y and its coefficients c1, . . . , cn when

represented as x∗ = c1a
(1) + · · ·+ cna

(n).

Let A = [a(1), . . . ,a(n)] be a m× n matrix. Then for x = c1a
(1) + · · ·+ cna

(n) in S, x = Ac so

||x− y||22 = ||Ac− y||22.

We can restate the linear least squares problem as finding c ∈ Rn that minimizes ||Ac − y||22. The normal

equations become A⊤Ac = A⊤y.

Lemma 7.18. Suppose A ∈ Rm×n with m > n, and that A has rank n. If A ∈ Rm×n with m ≥ n has rank

n if and only if A⊤A ∈ Rn×n is invertible.

Lemma 7.19. If A ∈ Rm×n with m ≥ n has rank n, then the linear least squares problem A⊤Ac = A⊤y

has a unique solution c.

Remark. (QR factorization for LLS problems) Suppose A ∈ Rm×n with m > n and A is full rank. We

can apply QR factorization to compute A = QR where Q is an m × m orthogonal matrix and R is an

m × n upper triangular matrix. Partition Q = [Q̃,
˜̃
Q] and R = [R̃, 0]⊤ where Q̃ ∈ Rm×n,

˜̃
Q ∈ Rm×(m−n),

R̃ ∈ Rn×n. By block matrix multiplication A = QR = Q̃R̃. This form, A = Q̃R̃, where Q̃ ∈ Rm×n has

orthonormal columns, and R̃ is upper triangular is often called the condensed QR-factorization. Moreover,

since rank(A) = n and A = Q̃R̃, rank(R̃) ≥ n, and thus R̃ is invertible. The columns q(1), . . . ,q(n) of Q̃ are

an orthonormal basis of the range of A.

Given y ∈ Rm, for any c ∈ Rn, we have

||Ac− y||22 = ||R̃c− Q̃⊤y||22 + || ˜̃Q⊤
y||22.

Then ||Ac − y||22 is minimized if and only if R̃c = Q̃⊤y since R̃ is invertible. We solve for c by back-

subtitution. Since Q⊤ is orthogonal, the linear least-squares is equivalent to Q⊤Ac = Q⊤y. We solve

R̃c = Q̃⊤y for c. The closest element of S to y is x∗ = Ac, and ||e∗||2 = || ˜̃Q⊤
y||2.
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Lemma 7.20. Let κ2(M) = ||M̃ ||2 · ||R̃−1||2 be the condition number of R̃. Then κ2(A
⊤A) = κ2(R̃)

2.

Theorem 7.21. Suppose A ∈ Rm×n withm ≥ n, and A is full rank. The condensed form of QR factorization

is A = Q̃R̃, where Q̃ = [q(1) · · ·q(n)] ∈ Rm×n has orthonormal columns, and R̃ ∈ Rn×n is upper triangular

and invertible. For j = 1, 2, . . . , n, {q(1) · · ·q(j)} is an orthonormal basis of Sj = span{a(1), . . . ,a(j)}.

Remark. Let S = span{a(1), . . . ,a(n)}. Given y ∈ Rm, let x∗ be the closest element of S to y. Then

x∗ = c1a
(1) + · · · + cna

(n) = Ac, where c is the solution of Ac = y. If we represent x∗ in terms of the

orthonormal basis {q(1) · · ·q(n)} of S: x∗ = d1q
(1) + · · · dnq(n) = Q̃d, then dj = q(j)⊤y, so d = Q̃⊤y. So

solving the LLS problem Ac = y can be broken down into

(1) Form the condensed QR factorization of A: A = Q̃R̃.

(2) Form d = Q̃⊤y.

(3) Backsolve R̃c = d to find c.

Remark. (Gram-Schmidt as a condensed QR factorization) Suppose a(1), . . . ,a(n) ∈ Rm are linearly inde-

pendent (m ≥ n). Apply (orthonormal) Gram-Schmidt:

ζ(1) = a(1); ψ(1) = ζ(1)/||ζ(1)||2

ζ(j) = a(j) −
j−1∑
i=1

(ζ(i)
⊤
a(j))ψi; ψ(j) = ζ(j)/||ζ(j)||2

Using ζ(j) = tjjψ
(j), we can rewrite this as a(1) = t11ψ

(1), for 2 ≤ j ≤ n, a(j) =
∑j

i=1 tijψ
(i), Let

Ψ = [ψ(1) · · ·ψ(n)],

T =


t11 · · · t1n

. . .
...

tnn

 , and
A = [a1 · · ·an].

Then Ψ has orthonormal columns, T is n×n invertible, upper-triangular, and A = ΨT , which is a condensed

QR factorization of A.

Remark. (Modified Gram Schmidt) Computationally, the classic Gram Schmidt algorithm suffers from nu-

merical instability. The classic Gram-Schmidt algorithm is as follows: For j = 1, . . . , n,

b = a(j).

For i = 1, . . . , j − 1 (if j > 1),

b = b− (ψ(i)⊤a(j))ψ(i),

ψ(j) = b/||b||2.

The modified Gram-Schmidt algorithm has a single change: For j = 1, . . . , n,

b = a(j).

For i = 1, . . . , j − 1 (if j > 1),

b = b− (ψ(i)⊤b)ψ(i),

ψ(j) = b/||b||2.
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Theorem 7.22 (Singular Value Decomposition). Let A ∈ Rm×n with m ≥ n. Then there exists

orthogonal matrices U ∈ Rn×n and V ∈ Rm×m and a diagonal matrix Σ ∈ Rm×m with σ1 ≥ · · · ≥ σ ≥ 0

such that A = V ΣU⊤.

Corollary 7.23. Let Vr = [v(1) · · ·v(r)] ∈ Rm×r, Σr ∈ Rr×r be diagonal, and Ur = [u(1) · · ·u(r)] ∈ Rn×r.

Then A = VrΣrU
⊤
r .

Remark. (Weighted Discrete Inner Product) Fix distinct x0 < x1 < · · · < xm ∈ R and weights w0, w1, . . . , wm >

0. Let GF be the vector space of all grid functions f : {x0, . . . , xm} → R. Represent each f ∈ GF by its

graph vector F = [f(x0) · · · f(xm)]⊤ ∈ Rm+1. (The mapping f → F is a vector space isomorphism.) Define

the inner product on GF to be

⟨f, g⟩w =

m∑
i=0

f(xi)g(xi)wi.

Lemma 7.24.

(i) Let W be a (m+ 1)× (m+ 1) diagonal matrix. Then for f, g ∈ GF,

⟨f, g⟩w = F⊤WG, ||f ||w =
√
F⊤WF;

(ii) A set of functions in GF is linearly independent if and only if their graph vector are linearly independent

in Rm+1;

(iii) dim(GF) = m+ 1;

Remark. We often above notation: suppose a ≤ x0 < · · · < xm ≤ b. If f ∈ C[a, b], we often speak as if

f ∈ GF, meaning the restriction of f to the domain {x0, x1, . . . , xm}.

Lemma 7.25. Let R : C[a, b] → GF be the restriction operator, mapping f : [a, b] → R into f |x0,...,xm :

x0, . . . , xm → R, and let S be a subspace of C[a, b] for which R : S → GF is one-to-one on S. Then ⟨f, g⟩w
is an inner product on S.

Lemma 7.26. The set {g0(xi) = 1, g1(xi) = xi, . . . , gn(xi) = xni } are linearly independent in GF if and only

if n ≤ m.

Remark. (Least Squares Polynomial Fitting) Suppose a ≤ x0 < · · · < xm ≤ b and n ≤ m. We can either view

S = Pn ⊂ C[a, b] or S = span{g0, . . . , gn} ⊂ GF. Let p(x) = c0 + c1x + · · · + cnx
n (or p = c0g0 + · · · cngn)

Given y ∈ GF (with Y = [y(x0) · · · y(xm)]⊤), we want to find p ∈ S which minimizes ||p− y||2w. Then

A = [G0 · · ·Gn] =


1 x0 · · · xn0
...

...
...

1 xm · · · xnm

 ,

and c is the solution of the LLS problem Ac = Y and then p follows.

Remark. (Weighted Integral Inner Product) Fix a, b ∈ R with a < b, and fix w(x) > 0 that is continuous

on (a, b) with
∫ b

a
w(x) dx < ∞. Let V = C[a, b] the space of continuous function f : [a, b] → R with inner

product

⟨f, g⟩w =

∫ b

a

f(x)g(x)w(x) dx.

Theorem 7.27. ⟨f, g⟩w is an inner product on C[a, b].
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Remark. Let g0, . . . , gn be linearly independent functions in C[a, b], and let S = span{g0, . . . , gn}. Given

y ∈ C[a, b], we want to find the closest f = c0g0 + · · · cngn ∈ S to y in

||f − y||2w =

∫ b

a

 n∑
j=0

cjgj(x)− y(x)

2

w(x) dx.

We can form the normal equations
⟨g0, g0⟩w · · · ⟨g0, gn⟩w

...
. . .

...

⟨gn, g0⟩w · · · ⟨gn, gn⟩w



c0
...

cn

 =


⟨g0, y⟩w

...

⟨gn, y⟩w

 ,
from which we can determine f = c0g0 + · · ·+ cngn. To make the computation of f easier, we could find an

orthogonal basis of S.

Remark. (Unnormalized Gram-Schmidt for polynomials) We can apply Gram-Schmidt on g0(x) = 1, . . . , gn(x) =

xn:

g0(x) = 1,

g1(x) = x− ⟨x, g0⟩w
⟨g0, g0⟩w

g0(x),

...

gk(x) = xk −
k−1∑
j=0

⟨xk, gj⟩w
⟨gj , gj⟩w

gj(x) for k ≤ n.

For eack k, gk(x) is a monic polynomial of degree k. For 0 ≤ k ≤ n, let pk(x) = gk(x)/||gk||w. Then {pk}nk=0

is an orthogonal basis of Pn. Given the inner product above, the monic orthogonal polynomials g0, . . . , gn
are unique.

Lemma 7.28. Let r0, r1, . . . , rn be orthogonal polynomials in ⟨⟩w, where each rk has exact degree k. Then

for e ≤ k ≤ n, xrk−1 ⊥ Pk−3, i.e., for all p ∈ Pk−3, ⟨xrk−1, p⟩w = 0.

Corollary 7.29. In particular, if g0, . . . , gn are the monic orthogonal polynomials in ⟨⟩w, then for 1 ≤ k ≤ n,

xgk−1 is a monic polynomial of exact degree k, and xgk−1 ⊥ Pk−3.

Lemma 7.30. Gram-Schmidt applied to {1, x, . . . , xgn−1} yields {g0, . . . , gn}.

Remark. In applying Gram-Schmidt to {1, x, . . . , xgn−1}, we obtain gk−1 just before we need it to get xgk−1.

So we can rewrite Gram-Schmidt for {1, x, . . . , xgn−1}, we get

g0(x) = 1,

g1(x) = xg0x− a1g0(x),

...

gk(x) = xgk−1(x)− akgk−1(x)− bkgk−2(x) for 2 ≤ k ≤ n.

Remark. For k ≥ 2,

bk =
⟨gk−1, gk−1⟩w
⟨gk−2, gk−2⟩w

.
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If we compute lj = ⟨gj , gj⟩w after getting gj , then to compute the next gk, we set

ak =
⟨xgk−1, gk−1⟩w

lk−1
and bk =

lk−1

lk−2
;

so we just require two inner products.

Theorem 7.31. Given f ∈ C[a, b] and ϵ > 0, there exists N and gN ∈ PN such that

max
a≤x≤b

|f(x)− gN (x)| = ||f − gN ||∞ < ϵ.

Theorem 7.32. {p0, p1, p2, . . .} is a complete orthonormal system in C[a, b] with || · ||w.

Remark. Recall the Chebyshev polynomials of the first kind: Let cos−1 : [−1, 1] → [0, π] be the standard

branch of the inverse cosine function, and for k = 0, 1, 2, . . ., define Tk on [−1, 1] by Tk(x) = cos(k cos−1(x)).

On [−1, 1], Tk is a polynomial of exact degree k, with leading coefficient 2k−1 for k ≥ 1. Moreover, T0(x) = 1,

T1(x) = x, and for k ≥ 1,

Tk+1(x) = 2xTk(x)− Tk−1(x).

Theorem 7.33. The Chebyshev polynomials {T0, T1, . . .} are orthogonal polynomials in C[−1,−1] with

inner product

⟨f, g⟩ =
∫ 1

−1

f(x)g(x)√
1− x2

dx

with w(x) = 1/
√
1− x2 on (−1, 1).

Corollary 7.34. If {p0, p1, . . .} are defined by

p0(x) =
1√
π
T0(x), pk(x) =

√
2

π
Tk(x) for k ≥ 1,

then {p0, p1, . . .} are orthonormal polynomials.

Remark. (Linear Least Squares with Orthogonal Polynomials) Given the inner product ⟨·, ·⟩w, let S = Pn,

and suppose r0, r1, . . . , rn are orthogonal polynomials with each rk having exact degree k, so {r0, . . . , rn}
is an orthogonal basis of Pn. Given f , let p∗n be the closest element of S = Pn to f in || · ||w. Then inner

product space theory gives

p∗n(x) =

n∑
j=0

⟨f, rj⟩w
⟨rj , rj⟩w

rj(x).

Theorem 7.35. Given a complete orthonormal system {p0, p1, p2, . . .} in C[a, b] with ⟨·, ·⟩. Given f ∈ C[a, b],

let p∗n(x) =
∑n

j=0⟨f, pj⟩wpj(x) be the closest element of Pn to f . Then ||f − p∗n||w → 0 as n→ ∞.

Definition 7.36. Given the conditions of Theorem 7.35, we say that the series
∑∞

j=0⟨f, pj⟩wpj(x) converges
in norm || · ||w to f , meaning that ||f −

∑n
j=0⟨f, pj⟩pj ||w → 0 as n → ∞. The coefficients ⟨f, pj⟩ are called

generalized Fourier coefficients and the series is called the generalized Fourier series for f (with respect to

{p0, p1, . . .}.)

Theorem 7.37. Let f have the generalized Fourier series
∑∞

j=0⟨f, pj⟩wpj(x). Then

||f − p∗n||2w = ||f ||2w − ||p∗n||2w =

∞∑
k=0

⟨f, pk⟩2w −
n∑

k=0

⟨f, pk⟩2w =

∞∑
k=n+1

⟨f, pk⟩2w.
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Theorem 7.38. Given f ∈ C[a, b] and k ≥ 0, there exists a unique polynomial p̃k(x) ∈ Pk that minimizes

||f − p||∞ = maxa≤x≤b |f(x)− p(x)| over all p ∈ Pk.

Remark. Define Ek(f) = ||f − p̃k||∞. Theorems that give upper bounds for Ek(f) are called Jackson

Theorems.

Theorem 7.39. If f ∈ Ck+1[a, b], then

Ek(f) ≤
1

2k(k + 1)!
||f (k+1)||∞

(
b− a

2

)k+1

.

Theorem 7.40. If f ∈ Cm[a, b] and k ≥ m, then

Ek(f) ≤
(π
2

)M 1

(k + 1)k(k − 1) · · · (k −m+ 2)
||f (m)||∞.

Theorem 7.41. Fix a, b ∈ R with a < b and w(x) on (a, b) with
∫ b

a
w(x) dx < ∞, and let p0, p1, . . . be

orthonomal polynomials. Given an f ∈ C[a, b] and k ≥ 1, let p̃k−1 be the closest element of Pk−1 to f in

|| · ||∞. Then ⟨p̃k−1, pk⟩w = 0, and

|⟨f, pk⟩w| = |⟨f − p̃k−1, pk⟩w| ≤
∫ b

a

|f(x)− p̃k−1(x)||pk(x)|w(x) dx ≤ Ek−1(f)

∫ b

a

|pk(x)|w(x) dx.

By Cauchy-Schwarz,

|⟨f, pk⟩w| ≤ Ek−1(f)

∫ b

a

|pk(x)|w(x) dx ≤ Ek−1(f)

(∫ b

a

w(x) dx

)1/2

.

Corollary 7.42. Let T0, T1, . . . be the Chebyshev polynomials, and p0 = 1√
π
T0, pk =

√
2
πTk for k ≥ 1. If

f ∈ C2[−1, 1], then

||f − p∗n||2w ≤ π3||f ′′||2∞
6(n− 1)3

.

Corollary 7.43. Let T0, T1, . . . be the Chebyshev polynomials, and p0 = 1√
π
T0, pk =

√
2
πTk for k ≥ 1. If

f ∈ C2[−1, 1], then ||f − p∗n||∞ → 0 as n→ ∞.

Corollary 7.44. Let T0, T1, . . . be the Chebyshev polynomials, and p0 = 1√
π
T0, pk =

√
2
πTk for k ≥ 1.

If f ∈ C2[−1, 1] and Qn(x) ∈ Pn is the polynomial interpolant of f at the shifted Chebyshev nodes, then

||f −Q||∞ → 0 as n→ ∞.

Theorem 7.45. In (a, b) (continuous case) or x0, . . . , xm (discrete case, with k ≤ m), the orthogonal poly-

nomial qk has k distinct (and thus simple) zeroes in (a, b) or (x0, xm).

7.4 Gaussian Quadrature

Remark. (Gaussian Quadrature) Fix a, b ∈ R with a < b and fix w(x) > 0 such that w is continuous

on (a, b) with
∫ b

a
w(x) dx < ∞. Then C[a, b] is an inner product space with inner product ⟨f, g⟩w =∫ b

a
f(x)g(x)w(x) dx. Suppose we want to construct a quadrature formula to approximate the weighted

integral

Iw(f) =

∫ b

a

f(x)w(x) dx for f ∈ C[a, b]
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using Qn(f) =
∑n

j=0Ajf(xj), chosen so that Qn(f) = Iw(f). Recall that Qn is defined to have precision

(at least) m if for all p ∈ Pm, Qn(p) = Iw(p).

If x0 < x1 < · · · < xn ∈ [a, b] are given, we can solve for A0, . . . , An to make Qn have precision (at least)

n by solving the linear system 
1 1 · · · 1

x0 x1 · · · xn
...

...
. . .

...

xn0 xn1 · · · xnn



A0

A1

...

An

 =


Iw(x

0)

Iw(x
1)

...

Iw(x
n)

 .
The matrix is Vandermonde so it is invertible.

Theorem 7.46. Given x0 < · · · < xn ∈ [a, b], there exists unique A0, . . . , An such that Qn has precision at

least n.

Remark. Given x0 < · · · < xn ∈ [a, b], recall that the Lagrange polynomials are defined to be

lk(x) =
∏

0≤j≤n

(
x− xj
xk − xj

)
for 0 ≤ k ≤ n,

and satisfy

lk(xj) = δkj =

{
1 if k = j

0 if k ̸= j
.

If Qn(f) =
∑n

j=0Ajf(xj) has precision (at least) n, then the solution of the linear system for A0, . . . , An is

explicitly given by Aj =
∫ b

a
lj(x)w(x) dx.

Theorem 7.47. Qn(f) =
∑n

j=0Ajf(xj) has precision at least 2n+ 1 for Iw(f) =
∫ b

a
f(x)w(x) dx.

Corollary 7.48. 2n+ 1 is the maximal precision; Qn can never have precision 2n+ 2.

Definition 7.49. The unique Qn of precision 2n+1 for Iw is called a Gaussian quadrature, and we say that

Qn is Gaussian for Iw.

Theorem 7.50. If Qn is Gaussian, then Ak > 0 for 0 ≤ k ≤ n.

Theorem 7.51. If Qn is Gaussian, then
∑n

j=0Aj =
∫ b

a
w(x) dx.

Corollary 7.52. Given w(x) > 0 such that w is continuous on (a, b) with
∫ b

a
w(x) dx < ∞, for each n, let

Qn be the Gaussian quadrature with nodes x0, · · · , xn and weights A0, . . . , An for Iw(f) =
∫ b

a
f(x)w(x) dx.

Then for all f ∈ C[a, b], limn→∞Qn(f) = Iw(f).

Theorem 7.53. If f ∈ C[a, b], then

|Iw(f)−Qn(f)| ≤ 2E2n+1(f)

∫ b

a

w(x) dx.

Theorem 7.54. Fix a, b ∈ R with a < b and fix w(x) > 0 such that w is continuous on (a, b) with∫ b

a
w(x) dx < ∞. Fix n, and let Qn(f) =

∑
j=0Ajf(xj) be Gaussian for Iw(f) =

∫ b

a
f(x)w(x) dx. Define

⟨f, g⟩w =
∫ b

a
f(x)g(x)w(x) dx as usual, and let p0, p1, . . . be the orthonormal polynomials, and define the
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discrete inner product by

⟨f, g⟩d =

n∑
j=0

Ajf(xj)g(xj).

Then p0, p1, . . . , pn are orthogonal in ⟨·, ·⟩d too.

7.5 Periodic Functions

Definition 7.55. A function f : R → R is called 2π-periodic if for all θ ∈ R, f(θ + 2π) = f(θ).

Remark. Let C2π denote the vector space of all continuous 2π periodic functions. If we consider the re-

strictions of functions in C2π to [0, 2π], we can view C2π as {f : f ∈ C[0, 2π] and f(0) = f(2π)}. Let

Ck
2π = {f ∈ C2π : f ∈ Ck(R)}. Notice that f ∈ C2π if and only if f, f (1), . . . , f (k) are all in C2π. If we re-

strict functions in Ck
2π to [0, 2π], we can view Ck

2π a {f : f ∈ Ck[0, 2π] and f (j)(0) = f (j)(2π) for 0 ≤ j ≤ k}.

Definition 7.56. Let Tn be the vector space of all trigonometric polynomials of degree ≤ n, i.e., linear

combinations of {1/2, cos θ, sin θ, cos 2θ, sin 2θ, . . . , cosnθ, sinnθ}. We use 1/2 instead of 1 for convenience.

Lemma 7.57. Tn is a subspace of C2π with dim(Tn) = 2n+1, and {1/2, cos θ, sin θ, cos 2θ, sin 2θ, . . . , cosnθ, sinnθ}
is a basis.

Theorem 7.58. {1/2, cos θ, sin θ, cos 2θ, sin 2θ, . . . , cosnθ, sinnθ} is an orthogonal basis of Tn.

⟨cos kθ, cos jθ⟩ =


2π if k = j = 0,

π if k = j > 0,

0 if k ̸= j and k ≥ 0, j ≥ 0,

,

⟨cos kθ, sin jθ⟩ = 0 for all k ≥ 0, j ≥ 1,

⟨sin kθ, sin jθ⟩ =

{
π if k = j ≥ 1,

0 if k ̸= j and k ≥ 1, j ≥ 1.

Given f ∈ C2π, let P
∗
n(θ) denote the closest element of Tn to f in the norm || · || induced by the inner product

⟨·, ·⟩. Then, by general inner product space theory,

P ∗
n(θ) =

n∑
k=0

⟨f, cos kθ⟩
⟨cos kθ, cos kθ⟩

cos kθ +

n∑
k=1

⟨f, sin kθ⟩
⟨sin kθ, sin kθ⟩

sin kθ.

Thus

P ∗
n(θ) =

A0

2
+

n∑
k=1

Ak cos kθ +

n∑
k=1

Bk sin kθ,

where

Ak =
1

π
⟨f, cos kθ⟩ = 1

π

∫ 2π

0

f(θ) cos(kθ) dθ for k ≥ 0

Bk =
1

π
⟨f, sin kθ⟩ = 1

π

∫ 2π

0

f(θ) sin(kθ) dθ for k ≥ 0.

Lemma 7.59. {1/2, cos θ, sin θ, cos 2θ, sin 2θ, . . .} is a complete orthogonal system in C2π. The series

A0

2
+

n∑
k=1

(Ak cos kθ +Bk sin kθ)
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is called the Fourier series of f . By general inner product space theory, it converges to f in the norm || · ||
induced by ⟨·, ·⟩.

Theorem 7.60. If f ∈ C1
2π, then the Fourier series of f converges uniformly to f .

Remark. (Discrete Fourier Transform) Fix an integerm > 0, let h = 2π/m, and let θj = jk for 0 ≤ j ≤ m−1,

so θ0 = 0, θ = h, . . . , θm−1 = (m − 1)h. are equally spaced in [0, 2π) and mh = 2π would wrap around by

periodicity to be the same as θ0. Let Gm be the vector space of grid functions f : {θ0, . . . , θm−1} → R, and
define an inner product ⟨·, ·⟩d on Gm by ⟨f, g⟩d =

∑m−1
j=0 f(θj)g(θj)wj , wj = 2π/m.

(Case 1) m is even, m = 2n. Then 1, cos θ, sin θ, . . . , cos((n− 1)θ), sin((n− 1)θ), cos(nθ) is an orthogonal

basis of Gm, each of || · ||d have length
√
π, except ||1||d =

√
2π.

(Case 2) m is odd, m = 2n + 1. Then 1, cos θ, sin θ, . . . , cos(nθ), sin(nθ) is an orthogonal basis of Gm,

each of || · ||d of length
√
π, exept ||1||d =

√
2π.

Definition 7.61. The operator mapping on f ∈ Gm into its discrete Fourier coefficients ⟨f, cos kθ⟩d, (0 ≤ k ≤
n) and ⟨f, sin kθ⟩d is called the discrete Fourier Transform (DFT). The Fast Fourier Transform (FFT) is an

algorithm that computes the DFT very quickly — in O(m log2(m)) operations instead of O(m2) operations.

7.6 Complex Inner Product Spaces

Definition 7.62. A complex inner product spaces is a complex vector space V together with an inner

product: a function V × V into C, denoted by ⟨u, v⟩, satisfying:
(i) for all v ∈ V , ⟨v, v⟩ ≥ 0; ⟨v, v⟩ if and only if v = 0;

(ii) for all α, β ∈ C, and for all u, v, w ∈ V , then ⟨αu+ βv,w⟩ = α⟨u,w⟩+ β⟨v, w⟩;
(iii) for all u, v ∈ V , ⟨v, u⟩ = ⟨u, v⟩.

Remark. Many definitions and facts about real inner product spaces carry over to complex inner product

spaces:

� The norm: ||v|| =
√
⟨v, v⟩;

� Cauchy-Schwarz inequality: |⟨u, v⟩| ≤ ||u|| · ||v||;

� Pythagorean Theorem: If ⟨u, v⟩ = 0, then ||u+ v||2 = ||u||2 + ||v||2.

� Orthonormal system: If {φ1, . . . , φn} is an orthonormal system, then ||
∑n

j=1 cjφj ||
2
=
∑n

j=1 |cj |2.

� Bessel’s Inequality: If {φ1, . . . , φn} is an orthonormal system and v ∈ V , then
∑n

j=1 |⟨v, φj⟩|2 ≤ ||v||2.
If {φ1, φ2, . . .} is an orthonormal system and v ∈ V , then

∑∞
j=1 |⟨v, φj⟩|2 = ||v||2.

Theorem 7.63. If {φ1, φ2, . . .} is an orthonormal system in a complex inner product space V , then the

following two conditions are equivalent:

(i) (Parseval’s Equality) For all v ∈ V ,
∑∞

j=1 |⟨v, φj⟩|2 = ||v||2.
(ii) For all v ∈ V , then ||v −

∑∞
j=1⟨v, φj⟩φj || → 0 as n→ ∞.

Definition 7.64. An orthonormal system {φ1, φ2, . . .} which satisfies either (i) or (ii) is called a complete

orthonormal system in V .

Definition 7.65. A function f : R → C is called 2π-periodic if for all x ∈ R, f(x + 2π) = f(x). Let C2π

denote the vector space of all continuous 2π-periodic complex-valued functions f : R → C with complex
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scalars. Define an inner product on C2π by

⟨f, g⟩ = 1

2π

∫ 2π

0

f(g)g(x) dx.

Definition 7.66. Let N be a nonnegative integer. Let TN be the subspace of C2π consisting of all trigono-

metric polynomials of degree ≤ N of {1/2, cosx, sinx, cos 2x, sin 2x, . . . , cosNx, sinNx}.

Lemma 7.67.

(i) dim(TN ) = 2N + 1;

(ii) {1/2, cosx, sinx, cos 2x, sin 2x, . . . , cosNx, sinNx} is an orthogonal basis of TN ;

(iii) {eiζx : −N ≤ ζ ≤ N} is an orthonormal basis of TN :

⟨eiζx,e
iηx

⟩ =

{
1 if ζ = η,

0 if ζ ̸= η
for ζ, η ∈ Z.

Definition 7.68. For f ∈ C2π and ζ ∈ Z, define the Fourier coefficients of f :

f̂(ζ) = ⟨f, eiζx⟩ = 1

2π

∫ 2π

0

e−iζxf(x) dx.

The formal series
∑∞

ζ=−∞ f̂(ζ)eiζx is called the Fourier series of f . Let Sn =
∑N

ζ=−N f̂(ζ)eiζx denote the

Nth partial sum of the Fourier series of f , so Sn ∈ TN .

Theorem 7.69.

(i) {eiζx : −∞ ≤ ζ ≤ ∞} is complete orthonormal system in C2π;

(ii) Parseval’s Relation:
∑∞

ζ=−∞ |f̂(ζ)|2 = ||f ||2;

(iii) ||f−Sn||2 → 0 asN → ∞, so the Fourier series of f converges to f in the norm ||g|| =
(

1
2π

∫ 2π

0
|g(x)|2 dx

)1/2
.

(iv) It can be shown that if f ∈ C2π and f ′ ∈ C2π, then Sn → f uniformly, i.e. maxx∈R |f(x)−SN (x)| → 0

as N → ∞.

Definition 7.70. Define the translation operator Th : C2π → C2π by Th(f)(x) = f(x+ h). For example, Th
applied to eiζx is eiζ(x+ h).

Theorem 7.71. Let g = Thf , i.e. g(x) = f(x+ h) Then hatg(ζ) = eiζhf̂(ζ).

Definition 7.72. Fix an integer M > 0. For each integer ν, define the grid point xν = 2πν/M . Let the

grid GM = {xν : ν is an integer}. Let h = 2π/M , so xν = νh. A function f : GM → C is called 2π-periodic

if f(x + 2π) = f(x) for all x ∈ GM since xν + 2π = 2πν/M + 2π = 2π(ν +M)/M = xν+M , this condition

becomes f(xν+M ) = f(xν) for all integers ν.

Definition 7.73. Let Gm be the complex vector space of all 2π-periodic grid functions f : GM → C. Since
the values of f at the M grid points {xν : 0 ≤ ν ≤M −1} are independent of each other and they determine

f completely, e.g. f(x)−2 = f(xM−2), f(x−1) = f(xM−1), f(xM ) = f(x0). We will view GM as the vector

space of all functions f : {θ0, . . . , θM−1} → C. So Gm is an M -dimensional vector space.

Definition 7.74. Define an inner product on GM by

(f, g)M =
1

M

M−1∑
ν=0

f(xν)g(xν).
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Define the norm on GM by

||f ||M =
√
(f, f)M =

h

2π

M−1∑
ν=0

|f(xν)|2 ()
1/2

.

For f ∈ GM , and all integers ζ, define

f̂M (ζ) = (f, eiζx)M =
1

M

M−1∑
ν=0

e−iζxνf(xν).

Theorem 7.75.

(i) If ζ ≡ ν (mod M), then eiζx and eiνx restrict to the same grid function in GM .

(ii) For any integer ζ, η:

(eiζx, eiηx) =

{
1 if ζ ≡ η (mod M)

0 if ζ ̸≡ η (mod M).

(iii) Suppose M is odd, say M = 2N + 1. Then {eiζx : −N ≤ ζ ≤ N} is an orthonormal basis of GM .

(iv) Suppose M is even, say M = 2N . Then eiNx, e−iNx, and cosNx all restrict to the same grid function,

{eiζx : −N ≤ ζ ≤ N} is an orthonormal basis of GM , and {eiζx : −N ≤ ζ ≤ N} ∪ {cosNx} is an

orthonormal basis of GM .

(v) If ζ ≡ η (mod M), then eiζx and eiηx restrict to the same grid functions, so

f̂M (ζ) = (f, eiζx)M = (f, eiηx)M = f̂M (η).

In particular, f̂M (ζ +M) = f̂M (ζ). So f̂M (ζ) is an M -periodic function on ζ.

(vi) (Inversion formula) If M is odd, say M = 2N + 1. Then for any f ∈ GM ,

f(xν) =

N∑
ζ=−N

f̂M (ζ)eiζxν ν = 0, 1, . . . ,M − 1.

If M is even, say M = 2N . Then for any f ∈ GM ,

f(xν) =

N∑
ζ=−N+1

f̂M (ζ)eiζxν ν = 0, 1, . . . ,M − 1.

In general,

f(xν) =

N∑
ζ=−N+1

f̂M (ζ)eiζxν + f̂M (N) cos(Nxν), ν = 0, 1, . . . ,M − 1.

(vii) Recall h = 2π/M . If g = Thf , then ĝM (ζ) = eiζhf̂M (ζ). If g = T−hf , then ĝM (ζ) = e−iζhf̂M (ζ).

Definition 7.76 (Discrete Fourier Transform). Fix an integer M . Let f ∈ GM be a grid function.

Define an M -vector

fM =


f(x0)

f(x1)

· · ·
f(xM−1)

 .
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Using {eiζx : 0 ≤ ζ ≤M − 1} as an orthonormal basis of GM , define the M -vector

f̂M =


f̂(x0)

f̂(x1)

· · ·
f̂(xM−1)

 .
Let ω = e−(2πi)/M . Then

f̂M (ζ) =
1

M

M−1∑
ν=0

e−iζxνf(xν) =
1

M

M−1∑
ν=0

ωζνf(xν).

So f̂M =WM fM/M where WM is a M ×M matrix with

WM =


1 1 1 · · · 1

1 ω ω2 · · · ωM−1

1 ω2 ω4 · · · ω2(M−1)

...
...

...
. . .

...

1 ωM−1 ω2(M−1) · · · ω(M−1)(M−1)

 .

The mapping FM : CM → CM given by FM : fM → f̂M is called the discrete Fourier transform.

Note that ω = cos(2π/) + i sin(2π/M) = e2πi/M . Since

f(xν) =

M−1∑
ζ=0

(̂fM )(ζ)eiζxν =

M−1∑
ζ=0

ωζν f̂M (ζ)

for ν = 0, . . . ,M − 1 In addition, WM =W⊤
M ,

fM =WM f̂M =W
⊤
M f̂M .

The mapping F−1
M : CM → CM given by F−1

M : f̂M → f̂M is called the inverse discrete Fourier transform. In

particular, F−1
M ◦ FM = I. Then

(
W

⊤
M

) (
1
MWM

)
= I, so

(
1√
M
WM

)⊤ (
1√
M
WM

)
= I. Then 1√

M
WM is a

unitary matrix.

8 Special Topics

8.1 Singular Value Decomposition

Theorem 8.1. Let A ∈ Cm×n have rank r. Then there exist unitary matrices U ∈ Cn×n, V ∈ Cm×m such

that

V HAU =

[
Σ 0

0 0

]
where Σ ∈ Rr×r is a diagonal matrix with elements σ1, . . . , σr such that σ ≥ · · · ≥ σr > 0.

Definition 8.2. Writing A as

V

[
Σ 0

0 0

]
UH

is called the singular value decomposition (SVD) of A, and the values σ1, . . . , σn are called the singular values

of A. The columns of U are called right singular vectors of A. The rows of V H are called the left singular

vectors of A.
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Lemma 8.3. Let A ∈ Cm×n have rank r. The singular values of A are unique.

Lemma 8.4. Let A ∈ Cm×n have rank r with a singular value decomposition

A = V

[
Σ 0

0 0

]
UH .

Then {
Aui = σivi for i = 1, . . . , r;

Aui = 0 for i = r + 1, . . . , n.

Theorem 8.5. If A ∈ Cn×n is Hermitian with eigenvalues λ1, . . . , λn, then the singular values of A are

|λ1|, . . . , |λn|.

Theorem 8.6. Let A ∈ Cm×n have singular values σ1 ≥ · · · ≥ σn. Then ||A||2 = σ1 and ||A||2F = σ2
1+· · ·+σ2

n

where || · ||F is the Frobenius norm.

Corollary 8.7. ||A||2 =
√
ρ(AHA) where ρ is the spectral radius of A.

Theorem 8.8. Let A ∈ Cm×n have singular values σ1 ≥ · · · ≥ σn. Then for each k,

σk = min
dimS=n−k+1

(
max

x∈S,x ̸=0

||Ax||2
||x||2

)
(minimax),

σk = max
dimS=k

(
min

x∈S,x ̸=0

||Ax||2
||x||2

)
(maximin)

where S is an arbitrary subspace of Cn.

Theorem 8.9. Let A,B ∈ Cm×n have singular values σ1 ≥ · · · ≥ σn and τ1 ≥ · · · ≥ τn. Then

|σk − τk| ≤ ||A−B||2 for k = 1, . . . , n.

Theorem 8.10. Let A ∈ Cm×n have the singular value decomposition

A = V

[
Σ 0

0 0

]
UH .

Fix b ∈ Cm and consider the linear least squares problem: if

y = U

[
Σ−1 0

0 0

]
V Hb ∈ Cn

Then y minimizes ||b − Ax||22 over x ∈ Cn. Moreover, y is the unique minimum element: if ||b − Ax||22 =

||b−Ay||22 and x ̸= y, then ||x||2 > ||y||2.

Definition 8.11. The pseudo-inverse of A is

A+ = U

[
Σ−1 0

0 0

]
V H .

Lemma 8.12.

63



(i) y = A+b is the solution of LLS problem of smallest norm;

(ii) A+ does not depend on U, V because of (i);

(iii) If null(A) = {0}, it can be shown that A+ = (AHA)
−1
AH ;

(iv) If A ∈ Cn×n is invertible, then A−1UΣ−1V H , so ||A−1||2 = 1/σ;

(v) So κ2(A) = ||A||2 · ||A−1||2 = σ1/σ2 if A ∈ Cn×n is invertible.

Theorem 8.13. Let A,B ∈ Cm×n have singular values σ1 ≥ · · · ≥ σn and τ1 ≥ · · · ≥ τn. Then∑n
k=1 (σk − τk)

2 ≤ ||A−B||2F .

Theorem 8.14. SupposeA ∈ Cm×n has rank r, and s is an integer with 1 ≤ s < r. Then minrank(B)=s ||A−B||2 =

σs+1 and minrank(B)=s ||A−B||F =
√
σ2
s+1 + · · ·+ σ2

r , where σ1 ≥ · · · ≥ σn are the singular values of A.

Moreover, if the SVD of A is

A = V

[
Σ 0

0 0

]
UH

the minimum for both norms for B = A′ where

A′ = V

[
Σ′ 0

0 0

]
UH ,

where Σ′ = diag(σ1, . . . , σs) ∈ Cs×s.

Theorem 8.15. Given any A ∈ Cm×n and ϵ > 0, there exists B ∈ Cm×n of full rank such that ||A−B||2 ≤ ϵ.

8.2 Lanczos Method

Definition 8.16. Let A ∈ Cn×n and x ̸= 0 ∈ Cn. The grade of x with respect to A is the smallest positive

integer m such that {x,Ax, . . . , Amx} is linearly dependent.

Lemma 8.17. Let A ∈ Cn×n and x ̸= 0 ∈ Cn, and let m be the grade.

(i) m ≤ n;

(ii) there exist constants γ0, γ1, . . . , γm−1 such that Amx+ γm−1A
m−1x+ · · ·+ γ0x = 0;

(iii) γ0, γ1, . . . , γm−1 are unique.

Definition 8.18. The minimum polynomial of x to A is

πA,x(λ) = λm + γm−1λ
m−1 + · · ·+ λ0.

Corollary 8.19. πA,x(λ) divides πA(λ).

Definition 8.20. For s = 1, 2, . . . define Ms(x) = span{x,Ax, . . . , As−1x}. The sequence x,Ax,A2x, . . . is

called a Kyrlov sequence. The sequence M1,M2, . . . is called Kyrlov sequence of subspaces.

Lemma 8.21.

(i) M1(x) ⊂M2(x) ⊂ · · · ⊂Mm(x) =Mm+1(x) = · · ·
(ii) dimMs(x) = min(s,m).

Theorem 8.22. Mm is an invariant subspace ofA. The matrix ofA with respect to the basis {x,Ax, . . . , Am−1x}
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of Mm is 
0 0 · · · 0 −γ0
1 0 · · · 0 −γ1
...

...
. . .

...
...

0 0 · · · 1 −γm−1.

 .

Corollary 8.23. If Y is an invertible matrix such that

span{y1, . . . , ym} = span{x,Ax, . . . , Am−1x},

then Y −1AY is block upper triangular with m×m and (n−m)× (n−m) diagonal blocks.

Theorem 8.24. If A is derogatory, then every vector x ̸= 0 ∈ Cn has grade < n.

Theorem 8.25. Suppose A has distinct eigenvalues. Then x is a grade n if and only if x is note a linear

combination of < n eigenvectors.

Corollary 8.26. If A has distinct eigenvalues, the set of vectors x of grade less than n is the union of n

subspaces, each of dimn− 1.

Remark. (Lanczos Method) We will consider only the variant appropriate for real symmetric matrices A ∈
Rn×n. This is a proess for reducing A to the diagonal form using Krylov sequences. Suppose x ̸= 0 ∈ Rn is

of grade m. Let v1 = x/||x||2. Suppose that {v1, . . . , vk} have been constructed where 1 ≤ k ≤ m. Let

ak = v⊤k Avk,

wk+1 = Avk − αkvk − βk−1vk−1 (where βc = 0),

βk = ||wk+1||2,
vk+1 = wk+1/βk (if k < m).

Lemma 8.27. For k = 1, . . . ,m, {v1, . . . , vk} is an orthogonal basis of Mk.

Lemma 8.28. wm+1 = 0.

Theorem 8.29. If 1 ≤ s < m, then

AVs = VsTs + βsvs+1e
⊤
s .

If s = m, then

AVm = VmTm.

Remark. In practice, the Lanczos method was originally proposed as a way of computing a tridiagonal matrix

similar to A, but numerically , the vj ’s lack orthogonality due to round-off error. However, the method can

be used to get approximate eigenvalues. This may be effective when n is large and s << n.

Theorem 8.30. Suppose z = [ζ1, . . . , ζs]
⊤ with ||z||2 = 1 is an eigenvalues of Ts corresponding to eigenvalue

µ. Let y = Vsz. Then ||y||2 = 1 and ||Ay − µy|| = βs|ζs|.

8.3 Conjugate Gradient Method

Remark. Suppose Q ∈ Rn×n is symmetric and positive definite, and b ∈ Rn. Consider minimizing

ϕ(x) =
1

2
x⊤Qx− b⊤x
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over x ∈ Rn. Then ∆ϕ(x) = Qx− b, so the unique minimum of ϕ is at the solution x∗ of the linear equation

Qx = b.

Definition 8.31. Two vectors p1, p2 are called Q-conjugate if p⊤1 Qp2 = 0.

Theorem 8.32. If p1, . . . , pk are Q-conjugate (pairwise) and nonzero, they are linearly independent.

Remark. Suppose p1, . . . , pn are nonzero and Q-conjugate. Represent x∗ = α1p1 + · · ·+ αnpn. Then p⊤j b =

p⊤j Qx
∗ = αjp

⊤
j Qpj , so αj = (p⊤j b)/(p

⊤
j Apj). Note that αj can be evaluated from b without knowing x∗; x∗

can be obtained from

x∗ =

n∑
j=1

p⊤j b

p⊤j Qpj
pj .

Theorem 8.33 (Conjugate Direction Theorem). Suppose p1, . . . , pn are nonzero and Q-conjugate. Let

x1 ∈ Rn. Generate a sequence x1, . . . , xn+1 by

xk+1 = xk + γkpk where γk = − g⊤k pk
p⊤k Qpk

and gk = (∆ϕ)(xk) = Qxk − b. Then xn+1 = x∗.

Theorem 8.34. Let x1, . . . , xn+1 be the sequence in Theorem 8.33, and let Bk = span{p1, . . . , pn}.
(i) xk+1 minimizes ϕ(x) on the line x = xk + γpk for γ ∈ R; and
(ii) xk+1 minimizes ϕ(x) on the affine subspace x1 + Bk.

Corollary 8.35. For 1 ≤ j < k ≤ n+ 1, g⊤k pj = 0.

Remark. Suppose p1, . . . , pl are nonzero, Q-conjugate where l < n. Given x1, generate x1, . . . , xl+1, γ1, . . . , γl,

and g1, . . . , gl+1 as in the Conjugate Direction Theorem. The proof of the expanding subspace theorem

implies gk ⊥ Bk−1 for k = 1, . . . , l + 1.

Theorem 8.36 (Conjugate Gradient Algorithm). Let x1 ∈ Rn. Choose p1 = −g1 = b−Qx1 (if p1 = 0,

step: x1 = x∗). Let γ1 = −(g⊤1 p1)/(p
⊤
1 Qp1), x2 = x1+γ1p1, g2 = ∆ϕ(x2) = Qx2−b, ζ1 = (g⊤2 Qp1)/(p

⊤
1 Qp1),

and p2 = −g2 + ζ1p1 (if p2 = 0, stop: g2 = 0, so x2 = x∗). For k ≥ 2, suppose pk is nonzero. Let

γk = −(g⊤k pk)/(p
⊤
k Qpk), xk+1 = xk + γkpk, gk+1 = ∆ϕ(xk+1) = Qxk+1 − b, ζk = (g⊤k+1Qpk)/(p

⊤
k Qpk), and

pk+1 = −gk+1 + ζkpk (if pk+1 = 0, stop: gk+1 = 0, so xk+1 = x∗).

Theorem 8.37. It is clear that gk+1 = 0 implies pk+1 = 0, and the algorithm terminates. The following

theorem shows that pk+1 = 0 implies gk+1 = 0, and the conjugate gradient algorithm is a conjugate direction

method.

Theorem 8.38 (Conjugate Gradient Theorem). Suppose k ≥ 1 and pk ̸= 0. Then

(i) span{g1, . . . , gk} = span{p1, . . . , pk} = span{g1, Qg1, . . . , Qk−1g1};
(ii) p⊤k Qpj = 0 for 1 ≤ j ≤ k − 1;

(iii) γk = (g⊤k gk)/(p
⊤
k Qpk) and ζk = (g⊤k+1gk+1)/(g

⊤
k gk).

The last set of (i) is clearly span{p1, Qp1, . . . , Qk−1p1};

Corollary 8.39. If p1, . . . , pl are nonzero, then g1, . . . , gl are nonzero, and g⊤k gj = 0 for 1 ≤ j < k ≤ l + 1;

so {g1, . . . , gk} is an orthogonal basis of span{g1, Qg1, . . . , Qk−1g1} for k = 1, . . . , l.
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Corollary 8.40. Suppose that Lanczos algorithm is applied to Q with starting vector g1, and let m =

grade(g1). Then p1, . . . , pm in the conjugate gradient are all nonzero, and pm+1 = gm+1 = 0 for j = 1, . . . ,m;

gj is a multiple of vj in Lanczos.
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