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1 Introduction

1.1 Fundamental Concepts

Definition 1.1. An experiment is any activity or process whose outcome is subject to uncertainty.

Definition 1.2. An sample space of an experiment is the set of all possible outcomes of the experiment. We

denote the sample space by Ω.

Definition 1.3. An event, A, is a subset of a sample space, Ω, that is, A ⊆ Ω. Let ω ∈ Ω be the outcome

of an experiment. We say that the event A occurs if ω ∈ A.

Definition 1.4. A simple event is a subset of the sample space that contains only one outcome.

1.2 Laplace Distribution

Definition 1.5. Let N give the number of simple events in an event. Suppose all outcomes of an experiment

with finite sample space Ω are equally likely. Then, for all events A ⊆ Ω,

P(A) =
N(A)

N(Ω)
.

We call P the Laplace distribution (over Ω).

Lemma 1.6. The Laplace distribution P over Ω has the following properties:

(i) P(Ω) = 1.

(ii) P(A ∪B) = P(A) + P(B) for disjoint events A and B.

1.3 Probability and Set Theory

Theorem 1.7 (DeMorgan’s Law). For any events A and B we have

(i) (A ∪B)c = Ac ∩Bc,

(ii) (A ∩B)c = Ac ∪Bc.

Definition 1.8. Given A1, . . . , An ⊆ Ω we define

n⋃
k=1

Ak = A1 ∪ · · · ∪An = {ω ∈ Ω | ∃k ∈ {1, . . . , n} : ω ∈ Ak},

n⋂
k=1

Ak = A1 ∩ · · · ∩An = {ω ∈ Ω | ∀k ∈ {1, . . . , n} : ω ∈ Ak}.

Theorem 1.9. Given A1, . . . , An ⊆ Ω,

(i)

(
n⋃

k=1

Ak

)c

=

n⋂
k=1

Ac
k

(ii)

(
n⋂

k=1

Ak

)c

=

n⋃
k=1

Ac
k
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Definition 1.10. Let (Ak)
∞
k=1 be a sequence of subsets in Ω and define

lim inf
n→∞

An =

∞⋃
n=1

∞⋂
k=n

Ak = {ω ∈ Ω | ∃n ≥ 1 : ∀k ≥ n : ω ∈ Ak},

lim sup
n→∞

An =

∞⋂
n=1

∞⋃
k=n

Ak = {ω ∈ Ω | ∀n ≥ 1 : ∃k ≥ n : ω ∈ Ak}.

1.4 Axioms of Probability Theory

Definition 1.11. Let Ω be a finite sample space and A be the collection of all subsets of Ω. A probability

measure on (Ω,A) is a function P from A into the real numbers that satisfies

(i) P(A) ≥ 0 for all A ∈ A;

(ii) P(Ω) = 1;

(iii) P(A ∪B) = P(A) + P(B) for all pairwise disjoint A,B ∈ A.

The number of P(A) is called the probability that event A occurs. These properties are called non-negativity,

normalization, and additivity.

Definition 1.12. A collection A of subsets of Ω is called a σ-algebra if it satisfies the following conditons:

(i) ∅ ∈ A;

(ii) if A ∈ A, then Ac ∈ A;

(iii) if A1, A2, . . . ∈ A, then
⋃∞

k=1 Ak ∈ A.

Properties (ii) and (iii) are called closed under complement and countable additivity.

Theorem 1.13. The smallest σ-algebra associated with Ω is A = {∅,Ω}.

Theorem 1.14. If Ω is finite, then the power set 2Ω is a σ-algebra.

Theorem 1.15. If A is any subset of Ω, then A = {∅, A,Ac,Ω} is a σ-algebra.

Definition 1.16. Let Ω be a sample space and A be a σ-algebra on Ω. A probability measure on (Ω,A) is

a function P from A into the real numbers that satisfies

(i) P(A) ≥ 0 for all A ∈ A;

(ii) P(Ω) = 1;

(iii) if A1, A2, . . . ∈ A is a collection of pairwise disjoint events, in that Aj ∩ Ak = ∅ for all pairs j, k

satisfying j ̸= k, then

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P(Ak).

The triplet (Ω,A,P) is called a probability space.

Lemma 1.17. Let (Ω,A,P) be a probability space and A,B ⊆ Ω.

(i) P(Ac) = 1− P(A);

(ii) if A ⊆ B then P(A) ≤ P(A) + P(B \A) = P(B);

(iii) P(A ∪B) = P(A) + P(B)− P(A ∩B).
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Lemma 1.18 (Inclusion-Exclusion Formula). For any events A1, . . . , An we have

P(A1 ∪ · · · ∪An) =

n∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤n

P(A1 ∩ · · · ∩Ak).

For n = 2, this equation simplifies to (iii) of Lemma 1.17.

Theorem 1.19. Let A1, A2, · · · be an increasing sequence of events, i.e. A1 ⊂ A2 ⊂ A3 ⊂ · · · , then

lim
n→∞

P(An) =

∞⋃
k=1

P(Ak).

Let B1, B2, · · · be an decreasing sequence of events, i.e. B1 ⊃ B2 ⊃ B3 ⊃ · · · , then

lim
n→∞

P(Bn) =

∞⋂
k=1

P(Bk).

2 Combinatorics

2.1 Urn Models

Definition 2.1 (Falling Factorial). For r ∈ R and k ∈ N we define (r)k, ”r falling k”, as

(r)k = r · (r − 1) · · · (r − k + 1).

Definition 2.2 (Factorial). For n ∈ N we define n!, ”n factorial”, as

n! =

{
n · (n− 1) · · · 2 · 1 for n > 1,

1 for n = 0.

Definition 2.3 (Binomial Coefficient).

For r ∈ R and n ∈ N we define binomial coefficient
(
r
n

)
, ”r choose n” as(

r

n

)
=

r · (r − 1) · · · (r − n+ 1)

n!
=

r!

n!(r − n)!
.

For r ∈ R and n ∈ Z, n ≥ 0 we define the binomial coefficient
(
r
n

)
as

(
r

n

)
=

{
1 if n = 0,

0 if n < 0.

Theorem 2.4 (Vandermonde’s identity). For non-negative integers m,n, r, k ∈ N0,(
m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r − k

)
.

Definition 2.5 (Urn Model of Laplace experiments). Consider an urn with n balls which are labeled

1, . . . , n. An urn model is an experiment in which k times a ball is drawn at random from the urn and its

number is noted.

Definition 2.6 (Urn Model I, ”Ordered Sampling with Replacement”). Draw k times from an urn

with n balls. The number and the order of the ball are noted and the ball is put back into the urn. The
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outcome is ω = (a1, . . . , ak) where ai is the number of the ith draw (i.e. a k-tuple with values {1, . . . , n}).
The sample space is

ΩI = {(a1, . . . , ak) | a1, . . . , ak ∈ {1, . . . , n}}.

(i.e. all possible k-tuples with values in {1, . . . , n}).

Lemma 2.7. The cardinality of the set ΩI is |ΩI | = nk.

Definition 2.8 (Urn Model II, ”Ordered Sampling without Replacement”). Draw k times from an

urn with n balls. The number and the order of the ball are noted and the ball is not returned to the urn.

The outcome is ω = (a1, . . . , ak) where ai is the number of the ith draw (i.e. an arrangement of k elements

of {1, . . . , n}). The sample space is

ΩII = {(a1, . . . , ak) | a1, . . . , ak ∈ {1, . . . , n}, ai ̸= aj for i ̸= j}.

Lemma 2.9. The cardinality of the set ΩII is |ΩII | = (n)k = n · (n− 1) · · · (n− k + 1).

Definition 2.10 (Urn Model III, ”Unordered Sampling without Replacement”). Draw k times

from an urn with n balls. The number of the ball is noted but not the order, and the ball is not returned to

the urn. The outcome is ω = (a1, . . . , ak) (i.e. subsets of {1, . . . , n} of size k). The sample space is

ΩIII = {ω ⊆ {1, . . . , n} | |ω| = k}

(i.e. all possible subsets of {1, . . . , n} of size k).

Lemma 2.11. The cardinality of the set ΩIII is

|ΩIII | =
(
n

k

)
=

(n)k
k!

=
n · · · (n− 1) · · · (n− k + 1)

k!
.

Definition 2.12 (Urn Model IV, ”Unordered Sampling with Replacement”). Draw k times from

an urn with n balls. The number of the ball is noted but not the order, and the ball is returned to the

urn. The outcome is ω = (k1, . . . , kn) where ki denotes how often the ith ball was drawn (i.e. a tuple whose

values sum up to k). The sample space is

ΩIV = {(k1, . . . , kn) | ki ∈ N0, k1 + . . .+ kn = k}.

Lemma 2.13. The cardinality of the set ΩIV is

|ΩIV | =
(
k + n− 1

n− 1

)
=

(
k + n− 1

k

)
.

2.2 Discrete Probability Spaces

Definition 2.14. A probability space (Ω,A,P) is called discrete if there exists a finite or countable infinite

subset D ⊆ Ω such that P(D) = 1. The associated probability measure is also called discrete.

Lemma 2.15. Any discrete probability measure, P satisfies

P(A) =
∑
ω∈A

P({ω}),

that is, a discrete probability measure P is fully characterized by its values on simple events.
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Lemma 2.16. Let p : Ω → R be a function that satisfies the following:

(i) p(ω) = 0, except for countable many ω ∈ Ω,

(ii) p(ω) ≥ 0 for all ω ∈ Ω,

(iii)
∑

ω∈Ω p(ω) = 1.

Then p is a probability measure on (Ω,A) and we call p the probability (mass) function.

Definition 2.17 (Urn Model with Colored Balls). Consider an urn with n balls which are labeled

1, . . . , N with balls {1, . . . , R} being one color and {R + 1, . . . , N} being another color. We draw n times a

ball at random from the urn and note its number and/or color.

2.3 Hypergeometric Distribution

Definition 2.18 (Hypergeometric Distribution). Under the urn model with colored balls, draw n balls

at once from the urn. Consider the event Er where exactly r balls are the first color, then

Er = {A ⊆ {1, . . . , N} : |A| = n, |A ∩ {1, . . . , R}| = r, |A ∩ {R+ 1, . . . , N}| = n− r},

and

Ω = {ω ⊂ {1, . . . , N} : |ω| = n}.

Lemma 2.19. Define the probability mass function of the hypergeometric distribution as

p(r) =

(
R
r

)(
N−R
n−r

)(
N
n

) for r ∈ {0, 1, . . . , n}.

Then P(Er) = p(r).

2.4 Binomial Distribution

Definition 2.20 (Binomial Distribution). Under the urn model with colored balls, draw n times from

the urn with replacement. Consider the event Er where exactly r balls are the first color, then

Er = {(a1, . . . , an) : |{i : ai ∈ {1, . . . , R}}| = r},

and

Ω = {(a1, . . . , an) : a1, . . . , an ∈ {1, . . . , N}}.

Lemma 2.21. Define the probability mass function of the binomial distribution as

p(r) =

(
n

r

)(
R

N

)n(
1− R

N

)n−r

for r ∈ {0, 1, . . . , n}.

Then P(Er) = p(r).

2.5 Multinomial Distribution

Definition 2.22 (Urn Model With Many Colored Balls). Consider an urn with N balls which are

labeled 1, . . . , N with the first N1 balls of color 1, the second N2 balls of color 2, . . . , the last Nr balls of

color r. We draw n times a ball at random from the urn and its number and/or color is noted.
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Lemma 2.23. The number of possible ways in which a set A with cardinality |A| = k can be partitioned

into n subsets A1, . . . , An with cardinalities k1, . . . , kn such that k1 + . . .+ kn = n is given by

k!

k1! · · · kn!
.

Definition 2.24. For k, k1, . . . , kn ∈ Z we define multinomial coefficient as(
k

k1, . . . , kn

)
=

{
k!

k1!···kn!
if k1 ≥ 0, and and

∑n
i=1 ki = k,

0 otherwise.

Definition 2.25 (Multinomial Distribution). Under the urn model with many colored balls, draw n

balls with r colors with replacement. Consider the event En1,...,nr
, where exactly n1 balls are of one color,

n2 balls are of the second color, and so on, can be written as

En1,...,nr
= {(a1, . . . , an) : |{i : ai ∈ {Nk−1 + 1, . . . , Nk}}| = nk, k ∈ {1, . . . , r}},

where N0 = 0, N1 + · · ·Nr = N and n1 + · · ·+ nr = n, and

Ω = {(a1, . . . , an) : a1, . . . , an ∈ {1, . . . , N}}.

Lemma 2.26. Define the probability mass function of the multinomial distribution as

p(n1, . . . , nr) =

(
n

n1, . . . , nr

) r∏
k=1

(
Nk

N

)nk

,

for n1, . . . , nr ∈ N0 and n1 + · · ·+ nr = n. Then P(En1,...,nr ) = p(n1, . . . , nr).

3 Independence and Conditional Events

3.1 Independence

Definition 3.1. Let (Ω,A,P) be a probability triple. Two events A,B on (Ω,A,P) are called independent

if

P(A ∩B) = P(A)P(B).

Definition 3.2. The events A1, . . . , An are called independent if for each k ∈ {1, . . . , n} and each collection

of indices 1 ≤ i1 < . . . < ik ≤ n

P(Ai1 ∩ · · · ∩Aik) = P(Ai1) · · ·P(Aik).

Lemma 3.3. Let A1, . . . , An be independent events. Consider events B1, . . . , Bn such that

Bi = Ai or Bi = Ac
i .

Then the events B1, . . . , Bn are independent.

Definition 3.4. Let (Ωi,Ai,Pi) be discrete probability spaces with Pi characterized by the probability mass

function pi : Ωi → [0, 1], i = 1, . . . , n. The product space (Ω,P) is the discrete probabilty space with sample

space

Ω = Ω1 × · · · × Ωn = {(ω1, . . . , ωn) : ωi ∈ Ωi, 1 ≤ i ≤ n},

and product measure P defined by the probability mass function

p(ω1, . . . , ωn) = p1(ω1) · · · pn(ωn).
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Lemma 3.5. Let Ai ∈ Ωi be any event concerning only the ith experiment and let A′
i be defined by

A′
i = {ω : ω ∈ Ω, ωi ∈ Ai},

for 1 ≤ i ≤ n. Then

P(A′
i) = Pi(Ai) for all i = 1, . . . , n,

and the events A′
1, . . . , A

′
n are stochastically independent.

3.2 Conditional Probability

Definition 3.6. Let A,B ⊆ Ω be events such that P(A) > 0. The conditional probability of B given A is

defined by as

P(B | A) =
P(A ∩B)

P(A)
.

Lemma 3.7. Events A,B ⊂ Ω are independent if and only if P(B | A) = P(B).

Lemma 3.8 (Multiplication Rule). Let A1, . . . , An ⊆ Ω be events with P(A1 ∩ . . . ∩An−1 ̸= 0). Then,

P(A1 ∩ · · · ∩An) = P(A1) · P(A2 | A1) · · ·P(An | A1, . . . , An−1).

Definition 3.9. Events A1, . . . , An ⊆ Ω are a disjoint partition of Ω when B1 ∪ · · · ∪ Bn and Bi ∩ Bj = ∅
for i ̸= j.

Lemma 3.10 (Law of Total Probability). Let B1, . . . , Bn be a disjoint partition of Ω. If P(Bi) > 0 for

all 1 ≤ i ≤ n, then for any event A ⊆ Ω,

P(A) =

n∑
i=1

P(A | Bi)P(Bi).

Lemma 3.11 (Bayes’ Rule). Let B1, . . . , Bn be a disjoint partition of Ω. If P(Bi) > 0 for all 1 ≤ i ≤ n,

then for any events A ⊆ Ω and Bk ⊆ Ω,

P(Bk | A) =
P(A | Bk)P(Bk)∑n
i=1 P(A | Bi)P(Bi)

.

Definition 3.12. In the previous lemma, Lemma 3.11, P(B) is called the prior probability of B and P(B | A)

is called the posterior probability of B given A.

Lemma 3.13 (Gambler’s Ruin). Choose p to be some number such that 0 < p < 1, choose an integer

x such that 0 ≤ x ≤ K for some bound K, and let q = 1 − p. Consider a sequence {an} generated by the

following method:

an =


0, an−1 = 0

1, an−1 = K

an−1 + 1, with probability p

an−1 − 1, with probability q.

That is, an moves by one in either direction but terminates once it reaches 0 or K. Let Ax be the event that

an terminates at 0.

(i) If p ̸= q, then the probability that Ax occurs is

P(Ax) =
(q/p)x − (q/p)K

1− (q/p)K
.
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(ii) If p = q = 1/2, then the probability that Ax occurs is

P(Ax) = 1− x

K
.

Definition 3.14. A linear first-order difference equation is a recursive formula of the form

xt+1 = axt + b, for t = 0, 1, . . .

where a ̸= 1 and b are constants.

Lemma 3.15. The solution to the first-order linear difference equation is

xt = a

(
x0 −

b

1− a

)
+

b

1− a
.

4 Discrete Random Variables

4.1 Random Variables

Definition 4.1 (Random Variable). Let (Ω,A,P) be a probability space. A function X : Ω → R is called

measureable if for all α ∈ R
{ω ∈ Ω : X(ω) ≤ α} ∈ A.

We call such a function a random variable.

Remark. In discrete probability spaces, the σ-algebra A is usually the power set 2Ω, and therefore every

function X : Ω → R is a random variable. For more generate probability spaces, this is not generally true.

Definition 4.2. If X(ω) = x for some ω ∈ Ω, we call x the realization or observed value of X(ω).

Remark. We often drop ω and write X instead of X(ω) and thus denote events of Ω by

{X = a} = {ω ∈ Ω : X(ω) = a}.

Lemma 4.3. A random variable X defines a probability measure PX on R by assigning each A ⊂ R the

probability that X takes a value in A:

PX(A) = P({ω ∈ Ω : X(ω) ∈ A}).

When X−1(A) is an event in A,

PX(A) = P(X−1(A)).

Lemma 4.4. Given a random variable X and a set A ⊂ R, X−1(A) ∈ A if X is measureable and A is

Borel-measureable subset of R.

Lemma 4.5. For our purposes it suffices to know that all intervals and all open and closed subsets of R are

Borel-measureable.

Definition 4.6. Let X be a random variable on the probability space (Ω,A,P). The probability distribution

PX on R defined by

PX(A) = P({ω ∈ Ω : X(ω) ∈ A}) A ⊂ R is measureable

is called the distribution of X. We generally denote P({ω ∈ Ω : X(ω) ∈ A}) by P(X ∈ A).
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4.2 Discrete Random Variables

Definition 4.7. A random variable X is called discrete, if there exists a finite or countably infinite subset

D ⊆ R such that P(X ∈ D) = 1.

Definition 4.8. Let X be a discrete random variable with range {x1, x2, . . .}. The function p : X(Ω) → R
defined by

p(xi) = P({ω ∈ Ω : X(ω) = xi}) = P(X = xi).

is called the probability mass function of X. It is convenient to extend p to all of R by assigning p(x) = 0

for x ∈ R \X(Ω).

Lemma 4.9. Let X be a discrete random variable with range X(Ω) = {x1, x2, . . .}. Then x has a probability

mass function that satisfies the following

(i) p(xi) ≥ 0,

(ii)
∑∞

i=1 p(xi) = 1.

Lemma 4.10. If a function p : R → R satisfies properties (i) and (ii) from Lemma 4.9, then it is a probability

mass function for some random variable.

4.3 Distributions of Discrete Random Variables

Definition 4.11 (Laplace Distribution). A discrete random variable X has a Laplace distribution (or

uniform distribution) on {1, 2, . . . , N} if its probability mass function is given by

pX(k) = P(X = k) =
1

N
for k ∈ {1, 2, . . . , N}.

Definition 4.12. A Bernoulli trial (or binomial trial), X on Ω = {S, F} by

X(ω) =

{
1, ω = S,

0, ω = F.

Usually, S is called a ”success” and F is a ”failure”.

Definition 4.13 (Bernoulli Distribution). A Bernoulli trial X has a Bernoulli distribution with param-

eter p, where 0 ≤ p ≤ 1, if its probability mass function is given by

pX(1) = P(X = 1) = p and pX(0) = P(X = 0) = 1− p.

We denote this distribution by Ber(p).

Definition 4.14 (Binomial Distribution). A discrete random variable X has a binomial distribution with

parameters n and p if its probability mass function is given by

pX(k) = P(X = k) =

(
n

k

)
pk(1− p)n−k

for k = 0, 1, . . . , n. We denote this distribution by Binom(n, p).

Lemma 4.15. Let 0 ≤ p ≤ 1 be some probability and let n ∈ N be an integer. Suppose X = Y1+Y2+ . . . Yn

is a discrete random variable where each Yi is an independent and identically distributed random variable

with a Bernoulli distribution of parameter p. Then X has a binomial distribution with parameters n and p.
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Definition 4.16 (Geometric Distribution). A discrete random variable X has a geometric distribution

with parameter p, where 0 ≤ p ≤ 1, if its probability mass function is given by

pX(k) = P(X = k) = (1− p)k−1p

for k = 1, 2, . . . . We denote this distribution by Geo(p).

Remark. The geometric distribution is obtained by running an infinite sequence of independent Bernoulli

trials. X is the random variable defined by the number of trials conducted until the first ”success” occurs.

Definition 4.17 (Negative Binomial Distribution). A discrete random variable X has a negative bino-

mial distribution with parameters r and p, where r ∈ N and 0 ≤ p ≤ 1 if its probability mass function is

given by

pX(k) = P(X = k) =

(
r + k − 1

k

)
(1− p)kpr

for k = 0, 1, 2, . . .. We denote this distribution by NB(r, p).

Remark. The negative binomial distribution is obtained by counting the number of ”failures” before r ”suc-

cesses” occur.

Definition 4.18 (Hypergeometric Distribution). A discrete random variable X has a hypergeometric

distribution with parameter N , M , and n if its probability mass function is given by

pX(x) = P(X = x) =

(
M
x

)(
N−M
n−x

)(
N
n

)
where max{0, n−N +M} ≤ x ≤ min{n,M}. We denote this distribution by Hypergeo(N,M,n).

Theorem 4.19 (Poisson Limit Theorem). Let X1, X2, . . . be a sequence of Binom(n, pn) distributed

random variables. Suppose for some λ ∈ (0,∞), npn → λ as n → ∞. Then for all k = 0, 1, 2, . . . ,

lim
n→∞

P(Xn = k) = e−λλ
k

k!
.

Moreover, pλ(k) = e−λλk/k! is a probability mass function on k = 0, 1, 2, . . ..

Definition 4.20 (Poisson Distribution). A discrete random variable X has a Poisson distribution with

parameter λ > 0, if its probability mass function is given by

pX(k) = P(X = k) = e−λλ
k

k!

for k = 0, 1, 2, . . .. We denote this distribution by Pois(λ).

Remark. If X ∼ Binom(n, p) is a random variable where n is sufficiently large, then X can be approximated

by Pois(np).

4.4 Expectation, Variance, and Transformations

Definition 4.21 (Expected Value of a Discrete Random Variable). Let X be a discrete random

variable with probability mass function p. We define the expected value (also called the expectation or the

mean) of X to be

E[X] =
∑

x→X(Ω)

x · p(x).

We say that the expected value of X exists if
∑

x |x|p(x) < ∞.

12



Theorem 4.22. Let X be a discrete random variable with probability mass function p and let g : X(Ω) → R

be a map such that
∑

x |g(x)|p(x) < ∞. Then

E[g(X)] =
∑

x∈X(Ω)

g(x) · p(x).

Theorem 4.23 (Triangle Inequality for the Expected Value). Let X be a discrete random variable

whose expected value exists. Then

|E[X]| ≤ E[|X|].

Theorem 4.24 (Linearity of the Expected Value). Let X,Y be two discrete random variables whose

expected values exists. Then for arbitrary a, b ∈ R,
(i) E[aX] = aE[X],

(ii) E[X + Y ] = E[X] + E[Y ],

(iii) E[b] = b.

Definition 4.25. Let X be a random variable such that E[X2] < ∞. We define the variance of X as

Var(X) = E[(X − E[X])2].

The square root of the variance is called the standard deviation.

Theorem 4.26. Let X be a random variable. The following holds true:

(i) Var(aX + b) = a2Var(X) for all a, b ∈ R,
(ii) Var(X) = E[X2] + (E[X])2.

Theorem 4.27. Let X be a random variable and a ∈ R be an arbitrary number. Then,

E[(X − a)2] ≥ Var(x),

and equality holds if and only if a = E[X].

Theorem 4.28 (Markov’s Inequality). Let X be a random variable and a > 0 be arbitrary. Then

P(|X| ≥ a) ≤ E[|X|]
a

.

Theorem 4.29 (Chebychev’s Inequality). Let X be a random variable and a > 0 be arbitrary. Then

P(|X − E[X]| ≥ a) ≤ Var(x)

a2
.

Corollary 4.30. Let X be a random variable and a > 0 be arbitrary. Then

P
(
|X − E[X]| < a

√
Var(X)

)
> 1− 1

a2
.

Theorem 4.31 (Weak Law of Large Numbers for Bernoulli Experiments). Let Sn be the number

of successes in n independent Bernoulli Experiments with success probability p. Given ϵ > 0,

P
(∣∣∣∣Sn

n
− p

∣∣∣∣ ≥ ϵ

)
≤ p(1− p)

ϵ2n
,

and the right-hand side converges to 0 as n → ∞.
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Definition 4.32. For a continuous function f : [0, 1] → R defined the Bernstein polynomial as

Bf
n(x) =

n∑
k=0

(
n

k

)
f

(
k

n

)
xk(1− x)n−k.

Theorem 4.33. For every continuous function f : [0, 1] → R,

sup
0≤x≤1

∣∣Bf
n(x)− f(x)

∣∣→ 0 as n → ∞,

i.e. the sequence of Bernstein polynomials converges uniformly to f .

5 Continuous Random Variables

5.1 Continuous Random Variables

Definition 5.1. An integrable, non-negative function f is called probabilty density function of the random

variable X (or of its distribution PX), if for all a, b ∈ R with a ≤ b,

P(a < X ≤ b) = PX((a, b]) =

∫ b

a

f(x) dx.

A distribution with a probability density function is called a continuous distribution.

Lemma 5.2. If f is a probability density function, then∫ ∞

−∞
f(x) dx = 1.

Lemma 5.3. Let X be a continuous random variable. The distribution of X does not uniquely determine

the probability density function f .

Definition 5.4. A continuous random variable X has the uniform distribution over the interval [a, b] if it

has the probability density function

f(x) =

{
1/(b− a), a ≤ x ≤ b

0, otherwise.

The uniform distribution is denoted by Unif(a, b) and is the continuous analog to the Laplace distribution.

Definition 5.5. A continuous random variable X has the exponential distribution with rate parameter λ > 0

if it has the probability density function

f(x) =

{
λe−λx, x ≥ 0

0 otherwise.

The exponential distribution is denoted by Exp(λ) and is the continuous analog to the geometric distribution.

Lemma 5.6. Let X ∼ Exp(λ) be a continuous random variable with the exponential distribution. Then X

has the memoryless-ness property, that is,

P(X ≥ s+ t | X ≥ s) = P(X ≥ t)

for all s, t ≥ 0.
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Definition 5.7. A continuous random variable X has the normal (Gaussian) distribution with mean µ and

variance σ2 if it has the probability density function

f(x) =
1√
2πσ2

e−(x−µ)2/2σ2

.

The normal distribution is denoted by N (µ, σ2).

5.2 Cumulative Distribution Function

Definition 5.8. Let X be a random variable. We define its cumulative distribution function F : R → [0, 1]

as

F (x) = P(X ≥ x),

i.e. F (x) is the probability that the observed value of X is less or equal to x. If X is discrete with PMF p,

then

F (x) =
∑
y≤x

p(x).

If X is continuous with PDF f , then

F (x) =

∫ x

−∞
f(x) dx.

Theorem 5.9. The cumulative distribution function F of a random variable X has the following properties:

(i) F is monotone increasing, i.e for all s, t ∈ R, F (s) ≤ F (t) whenever s ≤ t;

(ii) F is right-continuous, i.e. for all x ∈ R, limy→x+ F (y) = F (x);

(iii) F has the following behavior at infinities: limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

5.3 Expectation and Variance

Lemma 5.10. Let X be a random variable with values in I ⊆ R and PDF fX . Let u : I → J and suppose

that u, u−1 are continuously differentiable on I and J , respectively. Then, the random variable Y = u(X)

has PDF

fY (y) =

fX(u−1(y))
∣∣∣ d
dyu

−1(y)
∣∣∣ , y ∈ J,

0, y ∈ R \ J.

Definition 5.11. Let X be a continuous random variable with PDF f . We say that the expected value of

X exists if
∫
|x|f(x) dx < ∞, and we define the expected value of X as

E[X] =

∫
xf(x) dx.

Theorem 5.12. Let X be a continuous random variable with PDF f and g : R → R be a measurable map.

If
∫
|g(x)|f(x) dx < ∞, then we have

E[g(X)] =

∫
g(x)f(x) dx.

Lemma 5.13. Let X be a random variable (continuous or discrete) and p ≥ 0 be arbitrary. If E[|X|p] < ∞,

then

E[|X|q] < ∞ for all q ∈ [0, p].
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6 Joint Distributions

6.1 Definition

Definition 6.1. Let X1, . . . , Xn be random variables on the probability space (Ω,A,P). The probability

distribution PX (or PX1,...,Xn) on Rn defined by

PX(A) = PX1,...,Xn(A) = P((X1, . . . , Xn) ∈ A)

for measurable A ⊆ Rn is called the joint distribution of X1, . . . , Xn.

Definition 6.2. Let X1, . . . , Xn be random variables on the probability space (Ω,A,P). The probability

distribution pX : X(Ω) → R defined by

pX(x) = pX1,...,Xn(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn),

is called the joint probability mass function of X1, . . . , Xn or the probability mass function of the random

vector X = (X1, . . . , Xn).

Definition 6.3. We call random variables X1, . . . , Xn independent if, for all intervals I1, . . . , In ⊆ R,

P(X1 ∈ I1, . . . , Xn ∈ In) =

n∏
i=1

P(Xi ∈ Ii).

Lemma 6.4. The random variablesX1, . . . , Xn are independent if and only if the events {X1 ∈ I1}, . . . , {Xn ∈
In} are independent for all intervals I1, . . . , In ⊆ R.

6.2 Discrete Joint Distributions

Lemma 6.5. LetX1, . . . , Xn be discrete random variable with joint probability mass function px(x1, . . . , xn).

Then the marginal probability mass function of Xi1 , . . . , Xik is

pi1,...,ik(xi1 , . . . , xik) =
∑

xj1
,...,xjn−k

pX(x1, . . . , xn),

where the indices {j1, . . . , jn−k} are the complement of the indices {i1, . . . , ik} in {1, . . . , n}.

Theorem 6.6. LetX1, . . . , Xn be discrete random variables with joint probability mass functions pX(x1, . . . , xn)

and let g : Rn → R. Then,

E[g(X1, . . . , Xn)] =
∑

(x1,...,xn)∈X(Ω)

g(x1, . . . , xn) · pX(x1, . . . , xn).

Theorem 6.7. Discrete random variables X,Y are independent if and only if

p(X,Y )(x, y) = pX(x) · pY (y) for all x, y ∈ R.

Theorem 6.8 (Convolution Formula for Discrete Random Variables). Let X,Y be two independent,

discrete random variables with PMFs p and q. Then the random variable Z = X + Y has PMF

r(z) =
∑

x∈X(Ω)

p(x)q(z − x) =
∑

y∈Y (Ω)

p(z − y)q(y).
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6.3 Continuous Joint Distributions

Definition 6.9. An integrable, non-negative f : Rn → R is called joint probability density function (joint

PDF) of the random variables X1, . . . , Xn (or of its distribution PX1,...,Xn
), it for all rectangles R = (a1, b1]×

· · · × (an, bn] ⊆ Rn,

P((X1, . . . , Xn) ∈ R) = PX1,...,Xn
(R) =

∫
R

f(x1, . . . , xn) dx1 · · · dxn.

Theorem 6.10. The formula in Definition 6.9 is valid for all regular domains A ⊆ Rn:

P((X1, . . . , Xn) ∈ A) =

∫
A

f(x1, . . . , xn) dx1 · · · dxn.

Lemma 6.11. Let X and Y be two continuous random variables with joint probability density function

f(x, y). Then the marginal probability density function of X is

fX(x) =

∫
f(x, y) dy.

Theorem 6.12. Let X1, . . . , Xn be continuous random variables with joint probability density function f

and let g : Rn → R. Then,

E[g(X1, . . . , Xn)] =

∫
g(x1, . . . , xn)f(x1, . . . , xn) dx1 · · · dxn.

Theorem 6.13. The continuous random variables X and Y are independent if and only if

f(X,Y )(x, y) = fX(x) · fY (y) for all x, y ∈ R.

Corollary 6.14. Random variables X1, . . . , Xn are independent if and only if

fX1,...,Xn
(x1, . . . , xn) = fX1

(x1) · · · fXn
(xn)

for all x1, . . . , xn ∈ R.

Corollary 6.15. Consider maps g1, . . . , gn where gi : R → R. If random variables X1, . . . , Xn are indepen-

dent, then g1(X1), . . . , gn(Xn) are independent, too.

Theorem 6.16 (Convolution Formula for Continuous Random Variables). Let X and Y be two

independent, continuous random variables with PDFs f and g, respectively. Then the random variable

Z = X + Y has PDF

h(z) =

∫
f(z − y)g(y) dy =

∫
f(x)g(z − x) dx.

7 Covariance and Correlation

7.1 Weak Law of Large Numbers

Lemma 7.1. Let X and Y be two independent random variable whose expectations exist. Then,

E[XY ] = E[X]E[Y ].

Lemma 7.2. Let X1, . . . , Xn be independent random variables whose variances exist. Then,

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+Var(Xn).
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Theorem 7.3. Let {Xn}n≥1 be a sequence of independent and identically distributed random variables with

finite mean µ and finite variance σ2. Then, for all ε > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − µ

∣∣∣∣∣ > ε

)
→ 0

as n → ∞.

7.2 Covariance and Correlation

Definition 7.4. Let X and Y be two random variables. We defined the covariance Cov(X,Y ) by

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])],

and the correlation coefficient ρX,Y as

ρX,Y =
Cov(X,Y )√

Var(X)
√

Var(Y )
.

The random variables X and Y are called uncorrelated if ρX,Y = 0. The coerrelation coefficient satisfies

−1 ≤ ρX,Y ≤ 1.

Theorem 7.5. The coerrelation coefficient is scale invariant, i.e. for all α > 0,

ραX,Y = ρX,αY = ρX,Y .

Lemma 7.6. Let X and Y be two random variables. Then,

(i) Cov(X,X) = Var(X),

(ii) Cov(X,Y ) = E[XY ]− E[X]E[Y ],

(iii) if X and Y are independent, then ρX,Y = 0, i.e. X and Y are uncorrelated.

7.3 Central Limit Theorem

Theorem 7.7 (Central Limit Theorem). LetX1, . . . , Xn independent and identically distributed random

variables with finite mean µ and finite variance σ2. For n ≥ 1, define Xn = 1
n

∑n
i=1 Xi, and

Zn =

√
n(Xn − µ)

σ
.

Then for any a ∈ R,
lim
n→∞

FZn(a) = Φ(a),

where Φ is the CDF of the standard normal distribution N (0, 1).
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